Revealing the Dynamics of Charge Carriers in Polymer:Fullerene Blends Using Photoinduced Time-Resolved Microwave Conductivity

During the past decade, time-resolved microwave conductivity (TRMC) has evolved to an established, powerful technique to study photoactive layers. With this feature paper, we aim to fulfill two goals: (1) give a full description of the photoinduced TRMC technique, including experimental details and data analysis, and discuss to what extent the TRMC technique differs from more conventional DC techniques and (2) illustrate the potential of this technique for probing charge carrier dynamics in photoactive materials. For these reasons recent studies on conjugated polymer:fullerene blends will be presented and discussed. The findings from these studies have advanced the insight into the mechanism of charge carrier generation and decay in polymer:fullerene blends, which allows us to improve the efficiency of organic photovoltaic cells based on this active layer architecture. In short, it is shown how the TRMC technique can be used as a versatile method to screen the potential of new photovoltaic materials.

[1]  T. Savenije,et al.  What Limits Photoconductance in Anatase TiO2 Nanostructures? A Real and Imaginary Microwave Conductance Study , 2013 .

[2]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[3]  H. Bässler,et al.  How do disorder, reorganization, and localization influence the hole mobility in conjugated copolymers? , 2013, Journal of the American Chemical Society.

[4]  W. Warta,et al.  Solar cell efficiency tables (version 41) , 2013 .

[5]  R. J. Kline,et al.  Use of X‐Ray Diffraction, Molecular Simulations, and Spectroscopy to Determine the Molecular Packing in a Polymer‐Fullerene Bimolecular Crystal , 2012, Advanced materials.

[6]  A. Saeki,et al.  A versatile approach to organic photovoltaics evaluation using white light pulse and microwave conductivity. , 2012, Journal of the American Chemical Society.

[7]  Tracey M. Clarke,et al.  Charge carrier mobility, bimolecular recombination and trapping in polycarbazole copolymer:fullerene (PCDTBT:PCBM) bulk heterojunction solar cells , 2012 .

[8]  Bryon W. Larson,et al.  Beyond PCBM: Understanding the Photovoltaic Performance of Blends of Indene‐C60 Multiadducts with Poly(3‐hexylthiophene) , 2012 .

[9]  R. J. Kline,et al.  Vertically Segregated Structure and Properties of Small Molecule–Polymer Blend Semiconductors for Organic Thin‐Film Transistors , 2012 .

[10]  Weiwei Li,et al.  Enhancing the photocurrent in diketopyrrolopyrrole-based polymer solar cells via energy level control. , 2012, Journal of the American Chemical Society.

[11]  C. Deibel,et al.  Impact of nongeminate recombination on the performance of pristine and annealed P3HT:PCBM solar cells , 2012, 1207.3787.

[12]  T. Aida,et al.  Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures. , 2012, Accounts of chemical research.

[13]  Garry Rumbles,et al.  An Optimal Driving Force for Converting Excitons into Free Carriers in Excitonic Solar Cells , 2012 .

[14]  T. Savenije,et al.  Mechanism of Mobile Charge Carrier Generation in Blends of Conjugated Polymers and Fullerenes: Significance of Charge Delocalization and Excess Free Energy , 2012 .

[15]  Alexander L. Ayzner,et al.  Photoinduced Charge Carrier Generation and Decay in Sequentially Deposited Polymer/Fullerene Layers: Bulk Heterojunction vs Planar Interface , 2012 .

[16]  David Beljonne,et al.  The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors , 2012, Science.

[17]  Steve Albrecht,et al.  On the Field Dependence of Free Charge Carrier Generation and Recombination in Blends of PCPDTBT/PC70BM: Influence of Solvent Additives. , 2012, The journal of physical chemistry letters.

[18]  Yang Yang,et al.  Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer , 2012, Nature Photonics.

[19]  S. Shaheen,et al.  Dark Carriers, Trapping, and Activation Control of Carrier Recombination in Neat P3HT and P3HT:PCBM Blends , 2011 .

[20]  Song Chen,et al.  Photo‐Carrier Recombination in Polymer Solar Cells Based on P3HT and Silole‐Based Copolymer , 2011 .

[21]  T. Fukushima,et al.  Photoconductivity of Self-Assembled Hexabenzocoronene Nanotube: Insight into the Charge Carrier Mobilities on Local and Long-Range Scales , 2011 .

[22]  R. J. Kline,et al.  Molecular packing of high-mobility diketo pyrrolo-pyrrole polymer semiconductors with branched alkyl side chains. , 2011, Journal of the American Chemical Society.

[23]  D. Friedrich,et al.  Analysis of Charge Carrier Kinetics in Nanoporous Systems by Time Resolved Photoconductance Measurements , 2011 .

[24]  A. Saeki,et al.  Direct Evaluation of Intrinsic Optoelectronic Performance of Organic Photovoltaic Cells with Minimizing Impurity and Degradation Effects , 2011 .

[25]  D. Ginley,et al.  Photoinduced carrier generation and decay dynamics in intercalated and non-intercalated polymer:fullerene bulk heterojunctions. , 2011, ACS nano.

[26]  J. Schins,et al.  Conductive response of a photo-excited sample in a radio-frequent driven resonance cavity. , 2011, The Review of scientific instruments.

[27]  Daniel Moses,et al.  Bulk Heterojunction Solar Cells with Large Open‐Circuit Voltage: Electron Transfer with Small Donor‐Acceptor Energy Offset , 2011, Advanced materials.

[28]  T. Savenije,et al.  Absence of Postnanosecond Charge Carrier Relaxation in Poly(3-hexylthiophene)/Fullerene Blends , 2011 .

[29]  M. Dadmun,et al.  A new model for the morphology of P3HT/PCBM organic photovoltaics from small-angle neutron scattering: rivers and streams. , 2011, ACS nano.

[30]  T. Savenije,et al.  Influence of Phase Segregation on Recombination Dynamics in Organic Bulk‐Heterojunction Solar Cells , 2011, 1107.1576.

[31]  M. Muhler,et al.  Photocatalytic activity of bulk TiO2 anatase and rutile single crystals using infrared absorption spectroscopy. , 2011, Physical review letters.

[32]  P. Meredith,et al.  Morphology of All‐Solution‐Processed “Bilayer” Organic Solar Cells , 2011, Advanced materials.

[33]  John E. Anthony,et al.  Determination of energy level alignment at interfaces of hybrid and organic solar cells under ambient environment , 2011 .

[34]  J. Moulijn,et al.  How phase composition influences optoelectronic and photocatalytic properties of TiO2 , 2011 .

[35]  A. Troisi,et al.  Theoretical Study of the Organic Photovoltaic Electron Acceptor PCBM: Morphology, Electronic Structure, and Charge Localization† , 2010 .

[36]  H. Murayama,et al.  Structural and electronic properties of extremely long perylene bisimide nanofibers formed through a stoichiometrically mismatched, hydrogen-bonded complexation. , 2010, Small.

[37]  Jenny Nelson,et al.  Field-Independent Charge Photogeneration in PCPDTBT/PC70BM Solar Cells , 2010 .

[38]  T. Savenije,et al.  Sensitization of p-type NiO Using n-type Conducting Polymers , 2010 .

[39]  Garry Rumbles,et al.  Prolonging charge separation in P3HT-SWNT composites using highly enriched semiconducting nanotubes. , 2010, Nano letters.

[40]  Thomas Strobel,et al.  Role of the Charge Transfer State in Organic Donor–Acceptor Solar Cells , 2010, Advanced materials.

[41]  Kyle M. Banyas,et al.  Temperature-independent vibrational dynamics in an organic photovoltaic material. , 2010, The journal of physical chemistry. B.

[42]  Tracey M. Clarke,et al.  Acceptor energy level control of charge photogeneration in organic donor/acceptor blends. , 2010, Journal of the American Chemical Society.

[43]  D. Ginley,et al.  The Effect of Nanoparticle Shape on the Photocarrier Dynamics and Photovoltaic Device Performance of Poly(3‐hexylthiophene):CdSe Nanoparticle Bulk Heterojunction Solar Cells , 2010 .

[44]  T. Savenije,et al.  Photoinduced Charge Carrier Generation in Blends of Poly(Thienothiophene) Derivatives and [6,6]-Phenyl-C61-butyric Acid Methyl Ester: Phase Segregation versus Intercalation , 2010 .

[45]  Shane R. Yost,et al.  Charge transfer state versus hot exciton dissociation in polymer-fullerene blended solar cells. , 2010, Journal of the American Chemical Society.

[46]  N. S. Sariciftci,et al.  Effect of 2-D Delocalization on Charge Transport and Recombination in Bulk-Heterojunction Solar Cells , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[47]  Shu Seki,et al.  Solution phase epitaxial self-assembly and high charge-carrier mobility nanofibers of semiconducting molecular gelators. , 2010, Journal of the American Chemical Society.

[48]  M. J. Tan,et al.  Charge mobility and recombination in a new hole transporting polymer and its photovoltaic blend. , 2010, ACS applied materials & interfaces.

[49]  M. Hilczer,et al.  Unified Theory of Geminate and Bulk Electron−Hole Recombination in Organic Solar Cells , 2010 .

[50]  Tom J. Savenije,et al.  Temperature-Independent Charge Carrier Photogeneration in P3HT−PCBM Blends with Different Morphology , 2010 .

[51]  Tracey M. Clarke,et al.  Charge photogeneration in organic solar cells. , 2010, Chemical reviews.

[52]  David Beljonne,et al.  Electronic Structure and Geminate Pair Energetics at Organic–Organic Interfaces: The Case of Pentacene/C60 Heterojunctions , 2009 .

[53]  N. Kambe,et al.  Insulated molecular wire with highly conductive pi-conjugated polymer core. , 2009, Journal of the American Chemical Society.

[54]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[55]  Benjamin J. Schwartz,et al.  Reappraising the Need for Bulk Heterojunctions in Polymer−Fullerene Photovoltaics: The Role of Carrier Transport in All-Solution-Processed P3HT/PCBM Bilayer Solar Cells , 2009 .

[56]  O. Inganäs,et al.  Observation of a Charge Transfer State in Low‐Bandgap Polymer/Fullerene Blend Systems by Photoluminescence and Electroluminescence Studies , 2009 .

[57]  J. Asbury,et al.  Barrierless free carrier formation in an organic photovoltaic material measured with ultrafast vibrational spectroscopy. , 2009, Journal of the American Chemical Society.

[58]  M. Toney,et al.  Tuning the properties of polymer bulk heterojunction solar cells by adjusting fullerene size to control intercalation. , 2009, Nano letters.

[59]  Alexander B. Sieval,et al.  Electron Trapping in Higher Adduct Fullerene‐Based Solar Cells , 2009 .

[60]  S. Barlow,et al.  Charge photogeneration in polythiophene-perylene diimide blend films. , 2009, Chemical communications.

[61]  R. Österbacka,et al.  Two dimensional Langevin recombination in regioregular poly(3-hexylthiophene) , 2009 .

[62]  Thomas Strobel,et al.  Origin of the efficient polaron-pair dissociation in polymer-Fullerene blends. , 2009, Physical review letters.

[63]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[64]  Christoph J. Brabec,et al.  Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells , 2009 .

[65]  Xiaoyang Zhu,et al.  Charge-transfer excitons at organic semiconductor surfaces and interfaces. , 2009, Accounts of chemical research.

[66]  J. Bisquert,et al.  Relaxation of photogenerated carriers in P3HT:PCBM organic blends. , 2009, ChemSusChem.

[67]  R. J. Kline,et al.  Semiconducting Thienothiophene Copolymers: Design, Synthesis, Morphology, and Performance in Thin‐Film Organic Transistors , 2009 .

[68]  J. Szmytkowski Analysis of the image force effects on the recombination at the donor-acceptor interface in organic bulk heterojunction solar cells , 2009 .

[69]  J. Loos,et al.  Three-dimensional nanoscale organization of bulk heterojunction polymer solar cells. , 2009, Nano letters.

[70]  Amy M. Ballantyne,et al.  Free Energy Control of Charge Photogeneration in Polythiophene/Fullerene Solar Cells: The Influence of Thermal Annealing on P3HT/PCBM Blends , 2008 .

[71]  C. Deibel,et al.  Polaron recombination in pristine and annealed bulk heterojunction solar cells , 2008, 0907.2559.

[72]  Jarvist M. Frost,et al.  Binary Organic Photovoltaic Blends: A Simple Rationale for Optimum Compositions , 2008 .

[73]  Donal D. C. Bradley,et al.  Bimolecular recombination losses in polythiophene: Fullerene solar cells , 2008 .

[74]  T. Savenije,et al.  Charge carrier dynamics in TiO2 nanoparticles at various temperatures , 2008 .

[75]  Jean Manca,et al.  The Relation Between Open‐Circuit Voltage and the Onset of Photocurrent Generation by Charge‐Transfer Absorption in Polymer : Fullerene Bulk Heterojunction Solar Cells , 2008 .

[76]  Martijn Lenes,et al.  Fullerene Bisadducts for Enhanced Open‐Circuit Voltages and Efficiencies in Polymer Solar Cells , 2008 .

[77]  S. Shaheen,et al.  Quenching of Excitons by Holes in Poly(3-hexylthiophene) Films , 2008 .

[78]  J. C. de Mello,et al.  Experimental determination of the rate law for charge carrier decay in a polythiophene: Fullerene solar cell , 2008 .

[79]  Weimin Zhang,et al.  Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy. , 2008, Journal of the American Chemical Society.

[80]  Jenny Nelson,et al.  Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. , 2008, Nature materials.

[81]  S. Shaheen,et al.  The Locus of Free Charge-Carrier Generation in Solution-Cast Zn1–xMgxO/Poly(3-hexylthiophene) Bilayers for Photovoltaic Applications† , 2007 .

[82]  N. S. Sariciftci,et al.  A review of charge transport and recombination in polymer/fullerene organic solar cells , 2007 .

[83]  T. Balaban,et al.  Photosensitization of TiO2 and SnO2 by Artificial Self-Assembling Mimics of the Natural Chlorosomal Bacteriochlorophylls , 2007 .

[84]  Nelson E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[85]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[86]  T. Savenije,et al.  Effect of the particle size on the electron injection efficiency in dye-sensitized nanocrystalline TiO2 films studied by time-resolved microwave conductivity (TRMC) measurements , 2007 .

[87]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[88]  J. Schoonman,et al.  A time-resolved microwave conductivity study of the optoelectronic processes in TiO2?In2S3?CuInS2 heterojunctions , 2007 .

[89]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[90]  T. Anthopoulos,et al.  The Mobility and Decay Kinetics of Charge Carriers in Pulse‐Ionized Microcrystalline PCBM Powder , 2006 .

[91]  Ronald Österbacka,et al.  Charge carrier mobility and lifetime versus composition of conjugated polymer/fullerene bulk-heterojunction solar cells , 2006 .

[92]  Xiaoniu Yang,et al.  The formation of crystalline P3HT fibrils upon annealing of a PCBM:P3HT bulk heterojunction , 2006 .

[93]  W. J. Beek,et al.  Photogeneration and decay of charge carriers in hybrid bulk heterojunctions of ZnO nanoparticles and conjugated polymers. , 2006, The journal of physical chemistry. B.

[94]  Valentin D. Mihailetchi,et al.  Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells , 2006 .

[95]  M. Shkunov,et al.  Ambipolar Field‐Effect Transistors Based on Solution‐Processable Blends of Thieno[2,3‐b]thiophene Terthiophene Polymer and Methanofullerenes , 2005 .

[96]  S. Tagawa,et al.  Photogeneration of charge carriers and their transport properties in poly[bis(p-n-butylphenyl)silane]. , 2005, The journal of physical chemistry. B.

[97]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[98]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[99]  Gang Li,et al.  Influence of composition and heat-treatment on the charge transport properties of poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester blends , 2005 .

[100]  Valentin D. Mihailetchi,et al.  Device model for the operation of polymer/fullerene bulk heterojunction solar cells , 2005 .

[101]  Xiaoniu Yang,et al.  The Effect of Thermal Treatment on the Morphology and Charge Carrier Dynamics in a Polythiophene–Fullerene Bulk Heterojunction , 2005 .

[102]  Ronald Österbacka,et al.  Time-dependent mobility and recombination of the photoinduced charge carriers in conjugated polymer/fullerene bulk heterojunction solar cells , 2005 .

[103]  M. P. D. Haas,et al.  Signature of exciton annihilation in the photoconductance of regioregular poly(3-hexylthiophene) , 2005 .

[104]  Xiaoniu Yang,et al.  Nanoscale morphology of high-performance polymer solar cells. , 2005, Nano letters.

[105]  D. Bradley,et al.  Composition and annealing effects in polythiophene/fullerene solar cells , 2005 .

[106]  T. Savenije,et al.  The Effect of Annealing on the Charge‐Carrier Dynamics in a Polymer/Polymer Bulk Heterojunction for Photovoltaic Applications , 2005 .

[107]  J. Warman,et al.  The disperse charge-carrier kinetics in regioregular poly(3-hexylthiophene) , 2004 .

[108]  J. Warman,et al.  Electrodeless time-resolved microwave conductivity study of charge-carrier photogeneration in regioregular poly(3-hexylthiophene) thin films , 2004 .

[109]  J. Kroon,et al.  Mobility and decay kinetics of charge carriers in photoexcited PCBM/PPV blends , 2004 .

[110]  Jessica E. Kroeze,et al.  Contactless Determination of the Photoconductivity Action Spectrum, Exciton Diffusion Length, and Charge Separation Efficiency in Polythiophene-Sensitized TiO2 Bilayers , 2003 .

[111]  M. Kunst,et al.  Structural influence on charge-carrier lifetimes in TiO2 powders studied by microwave absorption , 2003 .

[112]  D. Bradley,et al.  Charge recombination in polymer/fullerene photovoltaic devices , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[113]  R. Schropp,et al.  Spatially resolved photoconductive properties of profiled polycrystalline silicon thin films , 2002 .

[114]  T. Savenije,et al.  Contactless determination of the efficiency of interfacial charge separation in a TiO2/phenylene vinylene polymer junction , 2000 .

[115]  Ullrich Scherf,et al.  Charge carrier transport in conjugated polymers , 1999 .

[116]  R. Brenot,et al.  Real-time measurement of the evolution of carrier mobility in thin-film semiconductors during growth , 1999 .

[117]  R. Brenot,et al.  In situ characterization of microcrystalline silicon by time resolved microwave conductivity , 1998 .

[118]  V. Arkhipov,et al.  Non-Langevin recombination in disordered materials with random potential distributions , 1997 .

[119]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[120]  H. Bässler,et al.  Photoconduction in poly(3-alkylthiophene) II. Charge transport , 1993 .

[121]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[122]  Borsenberger,et al.  Nondispersive-to-dispersive charge-transport transition in disordered molecular solids. , 1992, Physical review. B, Condensed matter.

[123]  M. Kunst,et al.  Charge-carrier dynamics in titania powders , 1990 .

[124]  R. Schmidt,et al.  Surface and volume decay processes in semiconductors studied by contactless transient photoconductivity measurements , 1988 .

[125]  R. W. Fessenden,et al.  Photosensitized charge injection into TiO2 particles as studied by microwave absorption , 1986 .

[126]  M. Kunst,et al.  Charge carrier decay processes in a-Si:H studied with transient photoconductivity techniques , 1985 .

[127]  M. Kunst,et al.  Comparative study of time‐resolved conductivity measurements in hydrogenated amorphous silicon , 1985 .

[128]  Charles L. Braun,et al.  Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production , 1984 .

[129]  J. Warman,et al.  Photon-induced molecular charge separation studied by nanosecond time-resolved microwave conductivity , 1982 .

[130]  K. Haenen,et al.  Absorption phenomena in organic thin films for solar cell applications investigated by photothermal deflection spectroscopy , 2005 .

[131]  T. Savenije,et al.  The Yield and Mobility of Charge Carriers in Smooth and Nanoporous TiO2 Films , 1999 .

[132]  Y. Nakato,et al.  Microwave photoelectrochemical studies of silicon interfaces covered with platinum dots , 1996 .

[133]  S. Martin,et al.  Time-resolved microwave conductivity. Part 2.—Quantum-sized TiO2 and the effect of adsorbates and light intensity on charge-carrier dynamics , 1994 .