High Photovoltaic Performance of a Low‐Bandgap Polymer

[1]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[2]  Lawrence L. Kazmerski,et al.  Solar Photovoltaics R&D at the Tipping Point: A 2005 Technology Overview , 2006 .

[3]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[4]  O. Inganäs,et al.  Enhanced Photocurrent Spectral Response in Low‐Bandgap Polyfluorene and C70‐Derivative‐Based Solar Cells , 2005 .

[5]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[6]  David L. Carroll,et al.  High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends , 2005 .

[7]  Helmut Neugebauer,et al.  Extended photocurrent spectrum of a low band gap polymer in a bulk heterojunction solar cell , 2005 .

[8]  F. Zhang,et al.  Polymer Solar Cells Based on a Low‐Bandgap Fluorene Copolymer and a Fullerene Derivative with Photocurrent Extended to 850 nm , 2005 .

[9]  Richard H. Friend,et al.  General observation of n-type field-effect behaviour in organic semiconductors , 2005, Nature.

[10]  O. Inganäs,et al.  Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative , 2004 .

[11]  Kohshin Takahashi,et al.  Efficient organic solar cells by penetration of conjugated polymers into perylene pigments , 2004 .

[12]  M. Durstock,et al.  An Investigation of Poly(thienylene vinylene) in Organic Photovoltaic Devices , 2004 .

[13]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[14]  Christoph J. Brabec,et al.  Organic photovoltaics: technology and market , 2004 .

[15]  Ingo Riedel,et al.  Influence of electronic transport properties of polymer-fullerene blends on the performance of bulk heterojunction photovoltaic devices , 2004 .

[16]  Christoph J. Brabec,et al.  Simulation of light intensity dependent current characteristics of polymer solar cells , 2004 .

[17]  D. Bradley,et al.  Investigation of transport properties in polymer/fullerene blends using time-of-flight photocurrent measurements , 2003 .

[18]  Paul A. van Hal,et al.  Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. , 2003, Angewandte Chemie.

[19]  Mm Martijn Wienk,et al.  Electron Transport in a Methanofullerene , 2003 .

[20]  Christoph J. Brabec,et al.  Sensitization of low bandgap polymer bulk heterojunction solar cells , 2002 .

[21]  Christoph J. Brabec,et al.  Temperature dependence for the photovoltaic device parameters of polymer-fullerene solar cells under operating conditions , 2001 .

[22]  Raj René Janssen,et al.  Synthesis and characterization of a low bandgap conjugated polymer for bulk heterojunction photovoltaic cells , 2001 .

[23]  Christoph J. Brabec,et al.  Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time , 2001 .

[24]  C. Brabec,et al.  Low band-gap polymeric photovoltaic devices , 2001 .

[25]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[26]  J. Roncali Synthetic Principles for Bandgap Control in Linear pi-Conjugated Systems. , 1997, Chemical reviews.

[27]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[28]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[29]  K. Müller,et al.  A UPS, XPS and work function study of emersed silver, platinum and gold electrodes , 1986 .

[30]  R. Gomer,et al.  An experimental determination of absolute half‐cell emf’s and single ion free energies of solvation , 1977 .