Joining in Nonrigid Variation Simulation

Geometrical variation is closely related to fulfillment of both functional and esthetical requirements on the final product. To investigate the fulfillment of those requirements, Monte Carlo (MC)-based variation simulations can be executed in order to predict the levels of geometrical variation on subassembly and/or product level. If the variation simulations are accurate enough, physical tests and try-outs can be replaced, which reduce cost and lead-time. To ensure high accuracy, the joining process is important to include in the variation simulation. In this chapter, an overview of nonrigid variation simulation is given and aspects such as the type and number of joining points, the joining sequence and joining forces are discussed.

[1]  Rikard Söderberg,et al.  Including Assembly Fixture Repeatability in Rigid and Non-Rigid Variation Simulation , 2010 .

[2]  Rikard Söderberg,et al.  Simulation of the effect of geometrical variation on assembly and holding forces , 2013 .

[3]  Rikard Söderberg,et al.  Method for Handling Model Growth in Nonrigid Variation Simulation of Sheet Metal Assemblies , 2014, J. Comput. Inf. Sci. Eng..

[4]  Rikard Söderberg,et al.  Strategies for Optimization of Spot Welding Sequence With Respect to Geometrical Variation in Sheet Metal Assemblies , 2010 .

[5]  T. C. Woo,et al.  Tolerance Analysis for Sheet Metal Assemblies , 1996 .

[6]  Rikard Söderberg,et al.  Simulation of Non-Nominal Welds by Resolving the Melted Zone and its Implication to Variation Simulation , 2014 .

[7]  Yukio Ueda,et al.  A Predicting Method of Welding Residual Stress Using Source of Residual Stress (Report I) : Characteristics of Inherent Strain (Source of Residual Stress)(Mechanics, Strength & Structural Design) , 1989 .

[8]  Rikard Söderberg,et al.  Variation Simulation of Welded Assemblies Using a Thermo-Elastic Finite Element Model , 2013 .

[9]  Rikard Söderberg,et al.  Simulation of Variation in Assembly Forces Due to Variation in Spot Weld Position , 2013 .

[10]  Rikard Söderberg,et al.  Controlling Geometrical Variation Caused by Assembly Fixtures , 2016, J. Comput. Inf. Sci. Eng..

[11]  Y. Gene Liao Optimal design of weld pattern in sheet metal assembly based on a genetic algorithm , 2005 .

[12]  Andreas Pahkamaa,et al.  Combining Variation Simulation With Welding Simulation for Prediction of Deformation and Variation of a Final Assembly , 2012, J. Comput. Inf. Sci. Eng..

[13]  Rikard Söderberg,et al.  Efficient Contact Modeling in Nonrigid Variation Simulation , 2016, J. Comput. Inf. Sci. Eng..

[14]  Ching Hsieh,et al.  Clamping and welding sequence optimisation for minimising cycle time and assembly deformation , 2002 .

[15]  Rikard Söderberg,et al.  Minimizing Dimensional Variation and Robot Traveling Time in Welding Stations , 2014 .

[16]  Rikard Söderberg,et al.  Aspects of Fixture Clamp Modeling in Non-Rigid Variation Simulation of Sheet Metal Assemblies , 2013 .

[17]  Rikard Söderberg,et al.  An Efficient Solution to the Discrete Least-Cost Tolerance Allocation Problem With General Loss Functions , 2005 .

[18]  Rikard Söderberg,et al.  Managing physical dependencies through location system design , 2006 .

[19]  Rikard Söderberg,et al.  Computer Aided Assembly Robustness Evaluation , 1999 .

[20]  Rikard Söderberg,et al.  Tolerance Simulation of Compliant Sheet Metal Assemblies Using Automatic Node-Based Contact Detection , 2008 .

[21]  Rikard Söderberg,et al.  Variation Simulation of Spot Welding Sequence for Sheet Metal Assemblies , 2010 .

[22]  Sandro Wartzack,et al.  Skin Model Shapes: A new paradigm shift for geometric variations modelling in mechanical engineering , 2014, Comput. Aided Des..

[23]  Yukio Ueda,et al.  Mechanical Study on the Effect of the Initial Gap upon the Weldability of Spot Weld Joint(Physics, Process, Instrument & Measurement) , 1989 .

[24]  Rikard Söderberg,et al.  An Industrially Validated Method for Weld Load Balancing in Multi Station Sheet Metal Assembly Lines , 2014 .

[25]  A. Bachorski,et al.  Finite-element prediction of distortion during gas metal arc welding using the shrinkage volume approach , 1999 .

[26]  Rikard Söderberg,et al.  On the Robustness of the Volumetric Shrinkage Method in the Context of Variation Simulation , 2014 .

[27]  Rikard Söderberg,et al.  Welding of non-nominal geometries – physical tests , 2016 .

[28]  S. Jack Hu,et al.  Variation simulation for deformable sheet metal assemblies using finite element methods , 1997 .

[29]  Rikard Söderberg,et al.  Evaluating Genetic Algorithms that Optimize Welding Sequence with Respect to Geometrical Assembly Variation , 2010 .

[30]  Rikard Söderberg,et al.  Statistical shape modeling in virtual assembly using PCA-technique , 2013 .

[31]  Rikard Söderberg,et al.  Body in White Geometry Measurements of Non-Rigid Components: A Virtual Perspective , 2012 .

[32]  S. Charles Liu,et al.  Spot weld sequence in sheet metal assembly: Its analysis and synthesis , 1995 .

[33]  Tom Gray,et al.  Computational prediction of out-of-plane welding distortion and experimental investigation , 2005 .

[34]  Rikard Söderberg,et al.  Virtual Geometry Assurance Process and Toolbox , 2016 .

[35]  Rikard Söderberg,et al.  Evaluating genetic algorithms on Welding sequence optimization with respect to dimensional variation and cycle time , 2011, DAC 2011.

[36]  Jingxia Yuan,et al.  Deformable Sheet Metal Fixturing: Principles, Algorithms, and Simulations , 1996 .

[37]  Wu Yang,et al.  Assembly dimensional prediction for self-piercing riveted aluminum panels , 2005 .

[38]  Jaime A. Camelio,et al.  Modeling Variation Propagation of Multi-Station Assembly Systems With Compliant Parts , 2003 .

[39]  Lars Lindkvist,et al.  Variation Simulation of Sheet Metal Assemblies Using the Method of Influence Coefficients With Contact Modeling , 2007 .

[40]  B. W. Shiu,et al.  The dimensional quality of sheet metal assembly with welding-induced internal stress , 2000 .