Global Model-Checking of Infinite-State Systems

In this paper we extend the automata-theoretic framework for reasoning about infinite-state sequential systems to handle also the global model-checking problem. Our framework is based on the observation that states of such systems, which carry a finite but unbounded amount of information, can be viewed as nodes in an infinite tree, and transitions between states can be simulated by finite-state automata. Checking that the system satisfies a temporal property can then be done by a two-way automaton that navigates through the tree. The framework is known for local model checking. For branching time properties, the framework uses two-way alternating automata. For linear time properties, the framework uses two-way path automata. In order to solve the global model-checking problem we show that for both types of automata, given a regular tree, we can construct a nondeterministic word automaton that accepts all the nodes in the tree from which an accepting run of the automaton can start.

[1]  Bernhard Steffen,et al.  Model Checking the Full Modal Mu-Calculus for Infinite Sequential Processes , 1997, ICALP.

[2]  Natarajan Shankar,et al.  Combining Theorem Proving and Model Checking through Symbolic Analysis , 2000, CONCUR.

[3]  Moshe Y. Vardi,et al.  Micro-macro stack systems: a new frontier of elementary decidability for sequential systems , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[4]  Bernhard Steffen,et al.  Model Checking for Context-Free Processes , 1992, CONCUR.

[5]  Igor Walukiewicz,et al.  Automata for the Modal mu-Calculus and related Results , 1995, MFCS.

[6]  Amir Pnueli,et al.  Automatic Deductive Verification with Invisible Invariants , 2001, TACAS.

[7]  Javier Esparza,et al.  Efficient Algorithms for Model Checking Pushdown Systems , 2000, CAV.

[8]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[9]  Bernhard Steffen,et al.  Composition, Decomposition and Model Checking of Pushdown Processes , 1995, Nord. J. Comput..

[10]  Javier Esparza,et al.  Reachability Analysis of Pushdown Automata: Application to Model-Checking , 1997, CONCUR.

[11]  Orna Kupferman,et al.  Model Checking Linear Properties of Prefix-Recognizable Systems , 2002, CAV.

[12]  Rajeev Alur,et al.  Modular Strategies for Infinite Games on Recursive Graphs , 2003, CAV.

[13]  Yassine Lakhnech,et al.  Incremental Verification by Abstraction , 2001, TACAS.

[14]  Thomas Wilke,et al.  CTL+ is Exponentially more Succinct than CTL , 1999, FSTTCS.

[15]  Igor Walukiewicz,et al.  Pushdown Processes: Games and Model-Checking , 1996, Inf. Comput..

[16]  David A. Wagner,et al.  MOPS: an infrastructure for examining security properties of software , 2002, CCS '02.

[17]  Orna Kupferman,et al.  An Automata-Theoretic Approach to Reasoning about Infinite-State Systems , 2000, CAV.

[18]  Pawel Urzyczyn,et al.  Higher-Order Pushdown Trees Are Easy , 2002, FoSSaCS.

[19]  Pierre Wolper,et al.  Reasoning About Infinite Computations , 1994, Inf. Comput..

[20]  Javier Esparza,et al.  Model-Checking LTL with Regular Valuations for Pushdown Systems , 2001, TACS.

[21]  Orna Kupferman,et al.  Coverage metrics for temporal logic model checking* , 2006, Formal Methods Syst. Des..

[22]  David E. Muller,et al.  Alternating Automata on Infinite Trees , 1987, Theor. Comput. Sci..

[23]  Robert P. Kurshan,et al.  A Practical Approach to Coverage in Model Checking , 2001, CAV.

[24]  Olaf Burkart,et al.  Automatic Verification of Sequential Infinite-State Processes , 1998, Lecture Notes in Computer Science.

[25]  Pierre Wolper,et al.  Memory-efficient algorithms for the verification of temporal properties , 1990, Formal Methods Syst. Des..

[26]  S. Sieber On a decision method in restricted second-order arithmetic , 1960 .

[27]  Pierre Wolper,et al.  Automata theoretic techniques for modal logics of programs: (Extended abstract) , 1984, STOC '84.

[28]  Sriram K. Rajamani,et al.  The SLAM Toolkit , 2001, CAV.

[29]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[30]  Frank Neven,et al.  Automata, Logic, and XML , 2002, CSL.

[31]  Pierre Wolper,et al.  An automata-theoretic approach to branching-time model checking , 2000, JACM.

[32]  Pierre Wolper,et al.  Reasoning about infinite computation paths , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[33]  E. Allen Emerson,et al.  Tree automata, mu-calculus and determinacy , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[34]  Javier Esparza,et al.  A BDD-Based Model Checker for Recursive Programs , 2001, CAV.

[35]  Thierry Cachat Two-Way Tree Automata Solving Pushdown Games , 2001, Automata, Logics, and Infinite Games.

[36]  David E. Muller,et al.  The Theory of Ends, Pushdown Automata, and Second-Order Logic , 1985, Theor. Comput. Sci..

[37]  Jan-Pascal van Best,et al.  Trips on Trees , 1999, Acta Cybern..

[38]  A. Prasad Sistla,et al.  On Model-Checking for Fragments of µ-Calculus , 1993, CAV.

[39]  E. Clarke,et al.  Symbolic Model Checking : IO * ’ States and Beyond * , 1992 .

[40]  Thierry Cachat,et al.  Uniform Solution of Parity Games on Prefix-Recognizable Graphs , 2003, INFINITY.

[41]  Edmund M. Clarke,et al.  Symbolic Model Checking: 10^20 States and Beyond , 1990, Inf. Comput..

[42]  Stefan Schwoon,et al.  Model checking pushdown systems , 2002 .

[43]  Sriram K. Rajamani,et al.  Bebop: A Symbolic Model Checker for Boolean Programs , 2000, SPIN.

[44]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[45]  Dexter Kozen,et al.  Results on the Propositional µ-Calculus , 1982, ICALP.

[46]  E. Muller David,et al.  Alternating automata on infinite trees , 1987 .

[47]  E. Allen Emerson,et al.  Model Checking and the Mu-calculus , 1996, Descriptive Complexity and Finite Models.

[48]  Didier Caucal,et al.  On infinite transition graphs having a decidable monadic theory , 1996, Theor. Comput. Sci..

[49]  Bernhard Steffen,et al.  Model Checking the Full Modal mu-Calculus for Infinite Sequential Processes , 1997, Theor. Comput. Sci..

[50]  M. Rabin Automata on Infinite Objects and Church's Problem , 1972 .

[51]  Javier Esparza,et al.  More infinite results , 2001, INFINITY.

[52]  Y VardiMoshe,et al.  An automata-theoretic approach to branching-time model checking , 2000 .

[53]  David Walker,et al.  Local Model Checking in the Modal mu-Calculus , 1991, Theoretical Computer Science.

[54]  Thierry Cachat,et al.  Higher Order Pushdown Automata, the Caucal Hierarchy of Graphs and Parity Games , 2003, ICALP.

[55]  Yves-Marie Quemener,et al.  Model-checking of infinite graphs defined by graph grammars , 1996, INFINITY.

[56]  Moshe Y. Vardi Reasoning about The Past with Two-Way Automata , 1998, ICALP.

[57]  Olaf Burkart Model checking rationally restricted right closures of recognizable graphs , 1997, INFINITY.

[58]  Faron Moller,et al.  Verification on Infinite Structures , 2001, Handbook of Process Algebra.