Structure of a phage 434 Cro/DNA complex

[1]  B. Matthews,et al.  Comparison of the structures of cro and lambda repressor proteins from bacteriophage lambda. , 1989, Journal of molecular biology.

[2]  S. Harrison,et al.  Crystallization and X-ray diffraction studies of a 434 Cro-DNA complex. , 1987, Journal of molecular biology.

[3]  G. Vriend,et al.  The atomic structure of Mengo virus at 3.0 A resolution. , 1987, Science.

[4]  P Metcalf,et al.  Protein, DNA, and virus crystallography with a focused imaging proportional counter. , 1986, Science.

[5]  D. Filman,et al.  Three-dimensional structure of poliovirus at 2.9 A resolution. , 1985, Science.

[6]  John E. Johnson,et al.  Structure of a human common cold virus and functional relationship to other picornaviruses , 1985, Nature.

[7]  F. Bushman,et al.  Ethylation interference and X-ray crystallography identify similar interactions between 434 repressor and operator , 1985, Nature.

[8]  E. Brown,et al.  Substituting an α-helix switches the sequence-specific DNA interactions of a repressor , 1984, Cell.

[9]  W. Hol,et al.  3.2 Å structure of the copper-containing, oxygen-carrying protein Panulirus interruptus haemocyanin , 1984, Nature.

[10]  S. Harrison,et al.  Cocrystals of the DNA-binding domain of phage 434 repressor and a synthetic phage 434 operator. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[11]  B. Matthews,et al.  Comparison of the structures of Cro and λ repressor proteins from bacteriophage λ , 1983 .

[12]  I. Rayment,et al.  A Description of the Techniques and Application of Molecular Replacement Used to Determine the Structure of Polyoma Virus Capsid at 22.5 Å Resolution. , 1983, Acta crystallographica. Section B, Structural science.

[13]  R. Doolittle,et al.  Homology among DNA-binding proteins suggests use of a conserved super-secondary structure , 1982, Nature.

[14]  S. Harrison,et al.  The oscillation method for crystals with very large unit cells , 1979 .

[15]  T. A. Jones,et al.  A graphics model building and refinement system for macromolecules , 1978 .

[16]  George M. Church,et al.  A structure-factor least-squares refinement procedure for macromolecular structures using constrained and restrained parameters , 1977 .

[17]  G. Bricogne,et al.  Methods and programs for direct‐space exploitation of geometric redundancies , 1976 .

[18]  G. Bricogne Geometric sources of redundancy in intensity data and their use for phase determination , 1974 .

[19]  R. Dickerson,et al.  A least‐squares refinement method for isomorphous replacement , 1968 .

[20]  S. Harrison,et al.  Effect of non-contacted bases on the affinity of 434 operator for 434 repressor and Cro , 1987, Nature.

[21]  W. Hendrickson,et al.  Description of Overall Anisotropy in Diffraction from Macromolecular Crystals , 1987 .

[22]  S. Harrison,et al.  Structure of the represser–operator complex of bacteriophage 434 , 1987, Nature.

[23]  Mark Ptashne,et al.  A new-specificity mutant of 434 repressor that defines an amino acid–base pair contact , 1987, Nature.

[24]  M. Ptashne A Genetic Switch , 1986 .

[25]  R. Sauer,et al.  Protein-DNA recognition. , 1984, Annual review of biochemistry.

[26]  D. Blow,et al.  Determination of phases by the conditions of non-crystallographic symmetry , 1963 .