Contribution of CD8+ T Cells to Containment of Viral Replication and Emergence of Mutations in Mamu-A*01-Restricted Epitopes in Simian Immunodeficiency Virus-Infected Rhesus Monkeys

ABSTRACT Here, we investigated the containment of virus replication in simian immunodeficiency virus (SIV) infection by CD8+ lymphocytes. Escape mutations in Mamu-A*01 epitopes appeared first in SIV Tat TL8 and then in SIV Gag p11C. The appearance of escape mutations in SIV Gag p11C was coincident with compensatory changes outside of the epitope. Eliminating CD8+ lymphocytes from rhesus monkeys during primary infection resulted in more rapid disease progression that was associated with preservation of canonical epitopes. These results confirm the importance of cytotoxic T cells in controlling viremia and the constraint on epitope sequences that require compensatory changes to go to fixation.

[1]  Alessandro Sette,et al.  Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia , 2000, Nature.

[2]  D. Ho,et al.  Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome , 1994, Journal of virology.

[3]  J. Lifson,et al.  Highly sensitive SIV plasma viral load assay: practical considerations, realistic performance expectations, and application to reverse engineering of vaccines for AIDS , 2005, Journal of medical primatology.

[4]  D. Montefiori,et al.  Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. , 1999, Science.

[5]  G. Shaw,et al.  Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection , 1994, Journal of virology.

[6]  Yu Wai Chen,et al.  First Glimpse of the Peptide Presentation by Rhesus Macaque MHC Class I: Crystal Structures of Mamu-A*01 Complexed with Two Immunogenic SIV Epitopes and Insights into CTL Escape1 , 2007, The Journal of Immunology.

[7]  N. Letvin,et al.  Viral evolution and challenges in the development of HIV vaccines. , 2002, Vaccine.

[8]  Todd M. Allen,et al.  Analysis of Gag-specific Cytotoxic T Lymphocytes in Simian Immunodeficiency Virus–infected Rhesus Monkeys by Cell Staining with a Tetrameric Major Histocompatibility Complex Class I–Peptide Complex , 1998, The Journal of experimental medicine.

[9]  H. Clifford Lane,et al.  Administration of an Anti-CD8 Monoclonal Antibody Interferes with the Clearance of Chimeric Simian/Human Immunodeficiency Virus during Primary Infections of Rhesus Macaques , 1998, Journal of Virology.

[10]  J. Schmitz,et al.  Emergence of CTL coincides with clearance of virus during primary simian immunodeficiency virus infection in rhesus monkeys. , 1999, Journal of immunology.

[11]  Kristin Beaudry,et al.  Viral Escape from Dominant Simian Immunodeficiency Virus Epitope-Specific Cytotoxic T Lymphocytes in DNA-Vaccinated Rhesus Monkeys , 2003, Journal of Virology.

[12]  B. Walker,et al.  Immunopathogenesis and immunotherapy in AIDS virus infections , 2003, Nature Medicine.

[13]  Steven M. Wolinsky,et al.  Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes , 2002, Nature.

[14]  N. Letvin,et al.  Compensatory Substitutions Restore Normal Core Assembly in Simian Immunodeficiency Virus Isolates with Gag Epitope Cytotoxic T-Lymphocyte Escape Mutations , 2006, Journal of Virology.

[15]  J. Schmitz,et al.  A nonhuman primate model for the selective elimination of CD8+ lymphocytes using a mouse-human chimeric monoclonal antibody. , 1999, The American journal of pathology.

[16]  Todd M. Allen,et al.  Dominance of CD8 Responses Specific for Epitopes Bound by a Single Major Histocompatibility Complex Class I Molecule during the Acute Phase of Viral Infection , 2002, Journal of Virology.

[17]  L. Weinberger,et al.  Dramatic Rise in Plasma Viremia after CD8+ T Cell Depletion in Simian Immunodeficiency Virus–infected Macaques , 1999, The Journal of experimental medicine.

[18]  Todd M. Allen,et al.  Characterization of the peptide binding motif of a rhesus MHC class I molecule (Mamu-A*01) that binds an immunodominant CTL epitope from simian immunodeficiency virus. , 1998, Journal of immunology.