The Hippo Pathway Kinases LATS1/2 Suppress Cancer Immunity

[1]  N. Silverman,et al.  Toll Receptor-Mediated Hippo Signaling Controls Innate Immunity in Drosophila , 2016, Cell.

[2]  Xin-hua Liang,et al.  Immunocompromised and immunocompetent mouse models for head and neck squamous cell carcinoma , 2016, OncoTargets and therapy.

[3]  Kun-Liang Guan,et al.  Mechanisms of Hippo pathway regulation , 2016, Genes & development.

[4]  E. Wagner,et al.  Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction , 2015, Nature Cell Biology.

[5]  Bin Zhao,et al.  Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer , 2015, Cell.

[6]  N. Tapon,et al.  The Hippo Pathway Core Cassette Regulates Asymmetric Cell Division , 2015, Current Biology.

[7]  C. A. Johnston,et al.  Warts Phosphorylates Mud to Promote Pins-Mediated Mitotic Spindle Orientation in Drosophila, Independent of Yorkie , 2015, Current Biology.

[8]  G. Halder,et al.  MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway , 2015, Nature Communications.

[9]  K. Guan,et al.  YAP and TAZ: a nexus for Hippo signaling and beyond. , 2015, Trends in cell biology.

[10]  M. Beckmann,et al.  Abstract B32: Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses , 2016 .

[11]  T. Junt,et al.  Translating nucleic acid-sensing pathways into therapies , 2015, Nature Reviews Immunology.

[12]  R. Kiessling,et al.  Checkpoint blockade for cancer therapy: revitalizing a suppressed immune system. , 2015, Trends in molecular medicine.

[13]  M. Karin,et al.  A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis , 2015, Genes & development.

[14]  P. Sharma,et al.  Immune Checkpoint Targeting in Cancer Therapy: Toward Combination Strategies with Curative Potential , 2015, Cell.

[15]  John T. Chang,et al.  A gp130–Src–YAP module links inflammation to epithelial regeneration , 2015, Nature.

[16]  Kun-Liang Guan,et al.  The emerging roles of YAP and TAZ in cancer , 2015, Nature Reviews Cancer.

[17]  L. O’Driscoll,et al.  Biological properties of extracellular vesicles and their physiological functions , 2015, Journal of extracellular vesicles.

[18]  M. Delorenzi,et al.  Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy , 2014, Nature Medicine.

[19]  G. Tonon,et al.  RESCUE OF HIPPO CO-ACTIVATOR YAP1 TRIGGERS DNA DAMAGE-INDUCED APOPTOSIS IN HEMATOLOGICAL CANCERS , 2014, Nature Medicine.

[20]  F. Camargo,et al.  Hippo Signaling Regulates Microprocessor and Links Cell-Density-Dependent miRNA Biogenesis to Cancer , 2014, Cell.

[21]  P. Robbins,et al.  Regulation of immune responses by extracellular vesicles , 2014, Nature Reviews Immunology.

[22]  G. Halder,et al.  Discovering the Hippo pathway protein-protein interactome , 2014, Cell Research.

[23]  G. Halder,et al.  The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment , 2013, Nature Reviews Drug Discovery.

[24]  Feng Zhang,et al.  Genome engineering using CRISPR-Cas9 system. , 2015, Methods in molecular biology.

[25]  H. Schreiber,et al.  Innate and adaptive immune cells in the tumor microenvironment , 2013, Nature Immunology.

[26]  Anushya Muruganujan,et al.  Large-scale gene function analysis with the PANTHER classification system , 2013, Nature Protocols.

[27]  David M. Thomas,et al.  The Hippo pathway and human cancer , 2013, Nature Reviews Cancer.

[28]  yang-xin fu,et al.  Type I interferon response and innate immune sensing of cancer. , 2013, Trends in immunology.

[29]  Shuji Ogino,et al.  Restriction of intestinal stem cell expansion and the regenerative response by YAP , 2012, Nature.

[30]  Ming Li,et al.  An Immunosurveillance Mechanism Controls Cancer Cell Ploidy , 2012, Science.

[31]  Prahlad T. Ram,et al.  NetWalker: a contextual network analysis tool for functional genomics , 2012, BMC Genomics.

[32]  G. Dranoff,et al.  Experimental mouse tumour models: what can be learnt about human cancer immunology? , 2011, Nature Reviews Immunology.

[33]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[34]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[35]  Jeannie T. Lee,et al.  Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. , 2009, Cancer cell.

[36]  Kenta Nakai,et al.  PrognoScan: a new database for meta-analysis of the prognostic value of genes , 2009, BMC Medical Genomics.

[37]  Jiandie D. Lin,et al.  TEAD mediates YAP-dependent gene induction and growth control. , 2008, Genes & development.

[38]  R. Jaenisch,et al.  YAP1 Increases Organ Size and Expands Undifferentiated Progenitor Cells , 2007, Current Biology.

[39]  Li Li,et al.  Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. , 2007, Genes & development.

[40]  G. Feldmann,et al.  Elucidation of a Universal Size-Control Mechanism in Drosophila and Mammals , 2007, Cell.

[41]  Hong Liu,et al.  The dual functions of YAP-1 to promote and inhibit cell growth in human malignancy , 2013, Cancer and Metastasis Reviews.