Computational Combinatorial Optimization

In this paper we survey the basic features of state-of-the-art branch-and-cut algorithms for the solution of general mixed integer programming problems. In particular we focus on preprocessing techniques, branch-and-bound issues and cutting plane generation.

[1]  George L. Nemhauser,et al.  Experiments with parallel branch-and-bound algorithms for the set covering problem , 1993, Oper. Res. Lett..

[2]  G. Sonnevend An "analytical centre" for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming , 1986 .

[3]  Philip Wolfe,et al.  Note on a method of conjugate subgradients for minimizing nondifferentiable functions , 1974, Math. Program..

[4]  Michael Patriksson,et al.  Ergodic, primal convergence in dual subgradient schemes for convex programming , 1999, Mathematical programming.

[5]  C. Lemaréchal,et al.  THE U -LAGRANGIAN OF A CONVEX FUNCTION , 1996 .

[6]  Masao Fukushima,et al.  A Globally and Superlinearly Convergent Algorithm for Nonsmooth Convex Minimization , 1996, SIAM J. Optim..

[7]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[8]  Yuji Shinano,et al.  A generalized utility for parallel branch and bound algorithms , 1995, Proceedings.Seventh IEEE Symposium on Parallel and Distributed Processing.

[9]  Yurii Nesterov,et al.  New variants of bundle methods , 1995, Math. Program..

[10]  C. Lemaréchal,et al.  Nonsmooth Algorithms to Solve Semidefinite Programs , 1999 .

[11]  Laurence A. Wolsey,et al.  Valid inequalities for 0-1 knapsacks and mips with generalised upper bound constraints , 1990, Discret. Appl. Math..

[12]  K. Kiwiel A Dual Method for Certain Positive Semidefinite Quadratic Programming Problems , 1989 .

[13]  Defeng Sun,et al.  Quasi-Newton Bundle-Type Methods for Nondifferentiable Convex Optimization , 1998, SIAM J. Optim..

[14]  Robert Mifflin,et al.  A quasi-second-order proximal bundle algorithm , 1996, Math. Program..

[15]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[16]  Franz Rendl,et al.  A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..

[17]  J. Percus,et al.  Reduction of the N‐Particle Variational Problem , 1964 .

[18]  D. Bertsekas Projected Newton methods for optimization problems with simple constraints , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[19]  Antonio Frangioni,et al.  Solving semidefinite quadratic problems within nonsmooth optimization algorithms , 1996, Comput. Oper. Res..

[20]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[21]  C. Lemaréchal,et al.  The eclipsing concept to approximate a multi-valued mapping , 1991 .

[22]  F. Glover,et al.  In Modern Heuristic Techniques for Combinatorial Problems , 1993 .

[23]  Claude Lemaréchal,et al.  Convergence of some algorithms for convex minimization , 1993, Math. Program..

[24]  Torbjörn Larsson,et al.  The Efficiency of Ballstep Subgradient Level Methods for Convex Optimization , 1999, Math. Oper. Res..

[25]  K. Kiwiel Efficiency of Proximal Bundle Methods , 2000 .

[26]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[27]  J. Zowe,et al.  Some remarks on the construction of higher order algorithms in convex optimization , 1983 .

[28]  R. Fletcher Practical Methods of Optimization , 1988 .

[29]  G. Nemhauser,et al.  Integer Programming , 2020 .

[30]  C. Lemaréchal,et al.  Semidefinite Relaxations and Lagrangian Duality with Application to Combinatorial Optimization , 1999 .

[31]  Michael J. Best,et al.  Equivalence of some quadratic programming algorithms , 1984, Math. Program..

[32]  Boris N. Pshenichnyj The Linearization Method for Constrained Optimization , 1994 .

[33]  François Oustry,et al.  A second-order bundle method to minimize the maximum eigenvalue function , 2000, Math. Program..

[34]  Yuji Shinano,et al.  Control schemes in a generalized utility for parallel branch-and-bound algorithms , 1997, Proceedings 11th International Parallel Processing Symposium.

[35]  Krzysztof C. Kiwiel,et al.  Proximity control in bundle methods for convex nondifferentiable minimization , 1990, Math. Program..

[36]  M. Wagner,et al.  Generalized Linear Programming Solves the Dual , 1976 .

[37]  K. Kiwiel A Method for Solving Certain Quadratic Programming Problems Arising in Nonsmooth Optimization , 1986 .

[38]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[39]  N. Z. Shor Utilization of the operation of space dilatation in the minimization of convex functions , 1972 .

[40]  Jan Vlcek,et al.  A bundle-Newton method for nonsmooth unconstrained minimization , 1998, Math. Program..

[41]  Claude Lemaréchal,et al.  Variable metric bundle methods: From conceptual to implementable forms , 1997, Math. Program..

[42]  Harvey J. Everett Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources , 1963 .

[43]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[44]  C. Lemaréchal,et al.  Bundle methods applied to the unit-commitment problem , 1996 .

[45]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[46]  Robert Weismantel,et al.  On the 0/1 knapsack polytope , 1997, Math. Program..

[47]  Robert Mifflin,et al.  On VU-theory for Functions with Primal-Dual Gradient Structure , 2000, SIAM J. Optim..

[48]  V. N. Solov'ev,et al.  The subdifferential and the directional derivatives of the maximum of a family of convex functions , 1998 .

[49]  Yurii Nesterov,et al.  Complexity estimates of some cutting plane methods based on the analytic barrier , 1995, Math. Program..

[50]  Claude Lemaréchal,et al.  A geometric study of duality gaps, with applications , 2001, Math. Program..

[51]  Laurence A. Wolsey,et al.  Solving Mixed Integer Programming Problems Using Automatic Reformulation , 1987, Oper. Res..

[52]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[53]  Franz Rendl,et al.  A recipe for semidefinite relaxation for (0,1)-quadratic programming , 1995, J. Glob. Optim..

[54]  Stefan Feltenmark,et al.  Dual Applications of Proximal Bundle Methods, Including Lagrangian Relaxation of Nonconvex Problems , 1999, SIAM J. Optim..

[55]  Donald M. Topkis Letter to the Editor - A Note on Cutting-Plane Methods Without Nested Constraint Sets , 1970, Oper. Res..

[56]  K. Kiwiel Methods of Descent for Nondifferentiable Optimization , 1985 .

[57]  Uwe H. Suhl,et al.  Supernode processing of mixed-integer models , 1994, Comput. Optim. Appl..

[58]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[59]  J. E. Kelley,et al.  The Cutting-Plane Method for Solving Convex Programs , 1960 .

[60]  J. E. Falk Lagrange Multipliers and Nonconvex Programs , 1969 .

[61]  P. Camerini,et al.  On improving relaxation methods by modified gradient techniques , 1975 .

[62]  T. K. Ralphsyand,et al.  SYMPHONY: A Parallel Framework for Branch and Cut , 1999 .

[63]  Martin W. P. Savelsbergh,et al.  A Branch-and-Price Algorithm for the Generalized Assignment Problem , 1997, Oper. Res..

[64]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[65]  Richard M. Karp,et al.  The traveling-salesman problem and minimum spanning trees: Part II , 1971, Math. Program..

[66]  Yu. M. Ermol’ev Methods of solution of nonlinear extremal problems , 1966 .