Some Varieties of Finite Tree Automata Related to Restricted Temporal Logics

We provide structural descriptions of certain varieties of finite tree automata closed under a version of the cascade product, called the Moore product. As a byproduct, we obtain decidable characterizations of the expressive power of certain fragments of CTL on finite trees.

[1]  Doron A. Peled,et al.  Stutter-Invariant Temporal Properties are Expressible Without the Next-Time Operator , 1997, Inf. Process. Lett..

[2]  Wolfgang Thomas,et al.  Computation Tree Logic CTL* and Path Quantifiers in the Monadic Theory of the Binary Tree , 1987, ICALP.

[3]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[4]  Mordechai Ben-Ari,et al.  The temporal logic of branching time , 1981, POPL '81.

[5]  Andreas Potthoff First-Order Logic on Finite Trees , 1995, TAPSOFT.

[6]  Szabolcs Iván,et al.  Products of Tree Automata with an Application to Temporal Logic , 2008, Fundam. Informaticae.

[7]  Saeed Salehi,et al.  Varieties of Tree Languages , 2005 .

[8]  Jorge Almeida On pseudovarieties, varieties of languages, filters of congruences, pseudoidentities and related topics , 1990 .

[9]  Zoltán Ésik,et al.  Algebraic recognizability of regular tree languages , 2005, Theor. Comput. Sci..

[10]  Zoltán Ésik,et al.  On Logically Defined Recognizable Tree Languages , 2003, FSTTCS.

[11]  Magnus Steinby,et al.  General Varieties of Tree Languages , 1998, Theor. Comput. Sci..

[12]  Uschi Heuter Definite tree languages , 1988, Bull. EATCS.

[13]  Zoltán Ésik Characterizing CTL-like logics on finite trees , 2006, Theor. Comput. Sci..

[14]  Joseph Y. Halpern,et al.  “Sometimes” and “not never” revisited: on branching versus linear time temporal logic , 1986, JACM.

[15]  Thomas Wilke,et al.  Classifying Discrete Temporal Properties , 1999, STACS.

[16]  Michael Benedikt,et al.  Regular Tree Languages Definable in FO , 2005, STACS.

[17]  Robert McNaughton,et al.  Counter-Free Automata (M.I.T. research monograph no. 65) , 1971 .

[18]  Klaus Schneider,et al.  Verification of Reactive Systems: Formal Methods and Algorithms , 2003 .

[19]  G. Ricci,et al.  Cascades of tree-automata and computations in universal algebras , 1973, Mathematical systems theory.

[20]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[21]  Michael Benedikt,et al.  Regular tree languages definable in FO and in FOmod , 2009, TOCL.

[22]  Klaus Schneider Verification of Reactive Systems , 2004, Texts in Theoretical Computer Science.

[23]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[24]  Ville Piirainen Monotone Algebras, R-Trivial Monoids and a Variety of Tree Languages , 2004, Bull. EATCS.

[25]  Uschi Heuter First-Order Properties of Trees, Star-Free Expressions, adn Aperiodicity , 1988, STACS.

[26]  Wolfgang Thomas Logical Aspects in the Study of Tree Languages , 1984, CAAP.

[27]  Howard Straubing Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.

[28]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[29]  Dominique Perrin,et al.  First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..

[30]  George Gratzer,et al.  Universal Algebra , 1979 .

[31]  Joel VanderWerf Wreath products of algebras: Generalizing the Krohn-Rhodes theorem to arbitrary algebras , 1996 .

[32]  Dominique Perrin,et al.  On the Expressive Power of Temporal Logic , 1993, J. Comput. Syst. Sci..