Some Varieties of Finite Tree Automata Related to Restricted Temporal Logics
暂无分享,去创建一个
[1] Doron A. Peled,et al. Stutter-Invariant Temporal Properties are Expressible Without the Next-Time Operator , 1997, Inf. Process. Lett..
[2] Wolfgang Thomas,et al. Computation Tree Logic CTL* and Path Quantifiers in the Monadic Theory of the Binary Tree , 1987, ICALP.
[3] Raymond E. Miller,et al. Varieties of Formal Languages , 1986 .
[4] Mordechai Ben-Ari,et al. The temporal logic of branching time , 1981, POPL '81.
[5] Andreas Potthoff. First-Order Logic on Finite Trees , 1995, TAPSOFT.
[6] Szabolcs Iván,et al. Products of Tree Automata with an Application to Temporal Logic , 2008, Fundam. Informaticae.
[7] Saeed Salehi,et al. Varieties of Tree Languages , 2005 .
[8] Jorge Almeida. On pseudovarieties, varieties of languages, filters of congruences, pseudoidentities and related topics , 1990 .
[9] Zoltán Ésik,et al. Algebraic recognizability of regular tree languages , 2005, Theor. Comput. Sci..
[10] Zoltán Ésik,et al. On Logically Defined Recognizable Tree Languages , 2003, FSTTCS.
[11] Magnus Steinby,et al. General Varieties of Tree Languages , 1998, Theor. Comput. Sci..
[12] Uschi Heuter. Definite tree languages , 1988, Bull. EATCS.
[13] Zoltán Ésik. Characterizing CTL-like logics on finite trees , 2006, Theor. Comput. Sci..
[14] Joseph Y. Halpern,et al. “Sometimes” and “not never” revisited: on branching versus linear time temporal logic , 1986, JACM.
[15] Thomas Wilke,et al. Classifying Discrete Temporal Properties , 1999, STACS.
[16] Michael Benedikt,et al. Regular Tree Languages Definable in FO , 2005, STACS.
[17] Robert McNaughton,et al. Counter-Free Automata (M.I.T. research monograph no. 65) , 1971 .
[18] Klaus Schneider,et al. Verification of Reactive Systems: Formal Methods and Algorithms , 2003 .
[19] G. Ricci,et al. Cascades of tree-automata and computations in universal algebras , 1973, Mathematical systems theory.
[20] R. McNaughton,et al. Counter-Free Automata , 1971 .
[21] Michael Benedikt,et al. Regular tree languages definable in FO and in FOmod , 2009, TOCL.
[22] Klaus Schneider. Verification of Reactive Systems , 2004, Texts in Theoretical Computer Science.
[23] Ronald L. Rivest,et al. Introduction to Algorithms , 1990 .
[24] Ville Piirainen. Monotone Algebras, R-Trivial Monoids and a Variety of Tree Languages , 2004, Bull. EATCS.
[25] Uschi Heuter. First-Order Properties of Trees, Star-Free Expressions, adn Aperiodicity , 1988, STACS.
[26] Wolfgang Thomas. Logical Aspects in the Study of Tree Languages , 1984, CAAP.
[27] Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.
[28] Marcel Paul Schützenberger,et al. On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..
[29] Dominique Perrin,et al. First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..
[30] George Gratzer,et al. Universal Algebra , 1979 .
[31] Joel VanderWerf. Wreath products of algebras: Generalizing the Krohn-Rhodes theorem to arbitrary algebras , 1996 .
[32] Dominique Perrin,et al. On the Expressive Power of Temporal Logic , 1993, J. Comput. Syst. Sci..