Sandstorm erosion on solar reflectors: Highly realistic modeling of artificial aging tests based on advanced site assessment

[1]  Fausto Pedro García Márquez,et al.  A review of the application performances of concentrated solar power systems , 2019 .

[2]  O. Raccurt,et al.  Characterization of different Moroccan sands to explain their potential negative impacts on CSP solar mirrors , 2019 .

[3]  Ahmed Alami Merrouni,et al.  Atmospheric Transmittance Model Validation for CSP Tower Plants , 2019, Remote. Sens..

[4]  F. Wiesinger Erosion of Solar Reflectors in Desert Environments , 2018 .

[5]  Amal Matal,et al.  Laboratory Erosion Simulation of Antisoiling Glass Mirror , 2018, 2018 6th International Renewable and Sustainable Energy Conference (IRSEC).

[6]  J. A. Sarasua,et al.  A Review of Conventional and Innovative- Sustainable Methods for Cleaning Reflectors in Concentrating Solar Power Plants , 2018, Sustainability.

[7]  Robert Pitz-Paal,et al.  Sandstorm erosion testing of anti-reflective glass coatings for solar energy applications , 2018, Solar Energy Materials and Solar Cells.

[8]  Robert Pitz-Paal,et al.  Assessment of the erosion risk of sandstorms on solar energy technology at two sites in Morocco , 2018 .

[9]  Robert Pitz-Paal,et al.  Atmospheric extinction in solar Tower plants - A review , 2017 .

[10]  Kyriaki Corinna Datsiou,et al.  Artificial ageing of glass with sand abrasion , 2017 .

[11]  B. Bandyopadhyay,et al.  Dealing with dust – Some challenges and solutions for enabling solar energy in desert regions , 2017 .

[12]  Sebastian Reichenspurner,et al.  Particle Erosion on Solar Mirrors: Construction and First Experimental Stage of an Open Loop Wind Tunnel , 2016 .

[13]  A. Polycarpou,et al.  Normal impact of sand particles with solar panel glass surfaces , 2016 .

[14]  Francisco J. Santos-Alamillos,et al.  Worldwide impact of aerosol’s time scale on the predicted long-term concentrating solar power potential , 2016, Scientific Reports.

[15]  Lin J. Simpson,et al.  Review of Artificial Abrasion Test Methods for PV Module Technology , 2016 .

[16]  Natalie Hanrieder,et al.  Determination of Atmospheric Extinction for Solar Tower Plants , 2016 .

[17]  Mohd Amran Mohd Radzi,et al.  Power loss due to soiling on solar panel: A review , 2016 .

[18]  Ahmed Al-Salaymeh,et al.  The enerMENA meteorological network – Solar radiation measurements in the MENA region , 2016 .

[19]  Robert Pitz-Paal,et al.  Modeling beam attenuation in solar tower plants using common DNI measurements , 2016 .

[20]  Robert Pitz-Paal,et al.  Sand erosion on solar reflectors: accelerated simulation and comparison with field data , 2016 .

[21]  M. Karim,et al.  Laboratory simulation of the surface erosion of solar glass mirrors , 2015 .

[22]  H. Almond,et al.  Predicting the Effects of Sand Erosion on Collector Surfaces in CSP Plants , 2015 .

[23]  D. Philipp,et al.  Development of a Test Method for the Investigation of the Abrasive Effect of Sand Particles on Components of Solar Energy Systems , 2014 .

[24]  A. Fernández-García,et al.  Durability of solar reflector materials for secondary concentrators used in CSP systems , 2014 .

[25]  Lawrence L. Kazmerski,et al.  A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches , 2013 .

[26]  Ali Mamtimin,et al.  Diurnal variations of saltation activity at Tazhong: the hinterland of Taklimakan Desert , 2013, Meteorology and Atmospheric Physics.

[27]  M. Schiller,et al.  Leistungsfähige Spiegel für solarthermische Kraftwerke , 2012 .

[28]  Yaping Shao,et al.  Development of a physically based dust emission module within the Weather Research and Forecasting (WRF) model: Assessment of dust emission parameterizations and input parameters for source regions in Central and East Asia , 2009 .

[29]  Lucien Wald,et al.  Converting a successful research project into a sustainable service: The case of the SoDa Web service , 2006, Environ. Model. Softw..

[30]  P. D’Odorico,et al.  A field‐scale analysis of the dependence of wind erosion threshold velocity on air humidity , 2005 .

[31]  M. Mikami,et al.  Measurement of saltation process over gobi and sand dunes in the Taklimakan desert, China, with newly developed sand particle counter , 2005 .

[32]  M. Elwenspoek,et al.  A closer look at the ductile-brittle transition in solid particle erosion , 2002 .

[33]  S. Bouzid,et al.  Effects of sandblasting on the efficiencies of solar panels , 2000 .

[34]  G. Bergametti,et al.  Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas , 1999 .

[35]  G. Williams SOME ASPECTS OF THE EOLIAN SALTATION LOAD , 1964 .

[36]  M. Papaelias,et al.  Renewable Energies: Business Outlook 2050 , 2018 .

[37]  Simonine C Caron Accelerated aging of thick glass second surface silvered reflectors under sandstorm conditions , 2011 .

[38]  John Williams Engineering Tribology , 2022 .

[39]  Ronald Greeley,et al.  Wind as a Geological Process: On Earth, Mars, Venus and Titan , 1985 .

[40]  R. Bagnold,et al.  The Physics of Blown Sand and Desert Dunes , 1941 .