Improving noble metal catalytic activity in the dry reforming of methane by adding niobium

[1]  S. Bensaid,et al.  Characterization of the Evolution of Noble Metal Particles in a Commercial Three-Way Catalyst: Correlation between Real and Simulated Ageing , 2021, Catalysts.

[2]  A. Erdőhelyi Catalytic Reaction of Carbon Dioxide with Methane on Supported Noble Metal Catalysts , 2021, Catalysts.

[3]  Shudong Wang,et al.  Effect of niobium on the activity of Pd/xNb/Ce0.5Zr0.5O2 catalyst for CH4 combustion , 2020 .

[4]  G. Madras,et al.  Syngas production via CO2 reforming of methane over noble metal (Ru, Pt, and Pd) doped LaAlO3 perovskite catalyst , 2020 .

[5]  J. Bedia,et al.  Promoting Light Hydrocarbons Yield by Catalytic Hydrodechlorination of Residual Chloromethanes Using Palladium Supported on Zeolite Catalysts , 2020 .

[6]  A. Gurlo,et al.  Zirconium‐Assisted Activation of Palladium To Boost Syngas Production by Methane Dry Reforming , 2018, Angewandte Chemie.

[7]  S. Suib,et al.  Low temperature synthesis of NbC/C nano-composites as visible light photoactive catalyst , 2018, Scientific Reports.

[8]  Thi Hien Tran,et al.  Neuroepithelial control of mucosal inflammation in acute cystitis , 2018, Scientific Reports.

[9]  A. Stankiewicz,et al.  Synthesis, characterization, and application of ruthenium-doped SrTiO3 perovskite catalysts for microwave-assisted methane dry reforming , 2018 .

[10]  Guohua Liu,et al.  Silica‐Supported Molecular Catalysts for Tandem Reactions , 2018 .

[11]  J. Gonzalez-Leal,et al.  Highly stable ceria-zirconia-yttria supported Ni catalysts for syngas production by CO 2 reforming of methane , 2017 .

[12]  A. Infantes-Molina,et al.  Incorporation of molybdenum into Pd and Pt catalysts supported on commercial silica for hydrodeoxygenation reaction of dibenzofuran , 2017 .

[13]  R. Palkovits,et al.  Elucidation of the higher coking resistance of small versus large nickel nanoparticles in methane dry reforming via computational modeling , 2017 .

[14]  A. Bardow,et al.  Life cycle assessment of CO2-based C1-chemicals , 2017 .

[15]  M. Ziolek,et al.  The role of niobium component in heterogeneous catalysts , 2017 .

[16]  Tao Zhang,et al.  Hydrodeoxygenation of furans over Pd-FeOx/SiO2 catalyst under atmospheric pressure , 2017 .

[17]  E. Moretti,et al.  Pd-Nb binfunctional catalysts supported on silica and zirconium phosphate heterostructures for O-removal of dibenzofurane , 2016 .

[18]  R. Prasad,et al.  An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts , 2016 .

[19]  F. B. Passos,et al.  Decomposition of acetic acid for hydrogen production over Pd/Al2O3 and Pd/TiO2: Influence of metal precursor , 2016 .

[20]  Xinhua Gao,et al.  Ordered mesoporous alumina-supported bimetallic Pd–Ni catalysts for methane dry reforming reaction , 2016 .

[21]  M. Akbarzadeh Pasha,et al.  Carbon nanotube formation over laser ablated M and M/Pd (M = Fe, Co, Ni) catalysts: The effect of Pd addition , 2016 .

[22]  R. Moreno-Tost,et al.  Influence of the niobium supported species on the catalytic dehydration of glycerol to acrolein , 2015 .

[23]  Liang Zeng,et al.  Recent Advances on the Design of Group VIII Base-Metal Catalysts with Encapsulated Structures , 2015 .

[24]  J. Kuhn,et al.  Low temperature dry reforming of methane over Pt–Ni–Mg/ceria–zirconia catalysts , 2015 .

[25]  B. S. Çağlayan,et al.  A study on characterization and methane dry reforming performance of Co–Ce/ZrO2 catalyst , 2015 .

[26]  Yong Lu,et al.  The promoting role of Ag in Ni-CeO2 catalyzed CH4-CO2 dry reforming reaction , 2015 .

[27]  Rose Amal,et al.  Ni-SiO2 Catalysts for the Carbon Dioxide Reforming of Methane: Varying Support Properties by Flame Spray Pyrolysis , 2015, Molecules.

[28]  Hyun-Seog Roh,et al.  Study on coke formation over Ni/γ-Al2O3, Co-Ni/γ-Al2O3, and Mg-Co-Ni/γ-Al2O3 catalysts for carbon dioxide reforming of methane , 2014 .

[29]  J. Falconer,et al.  Stabilizing Ni Catalysts by Molecular Layer Deposition for Harsh, Dry Reforming Conditions , 2014 .

[30]  C. Gigola,et al.  Palladium nanoparticle's surface structure and morphology effect on the catalytic activity for dry reforming of methane , 2014 .

[31]  Sudarno,et al.  CeO2–SiO2 supported nickel catalysts for dry reforming of methane toward syngas production , 2013 .

[32]  W. Yuying,et al.  The investigation of NbO2 and Nb2O5 electronic structure by XPS, UPS and first principles methods , 2013 .

[33]  J. Dumesic,et al.  Ce promoted Pd–Nb catalysts for γ-valerolactone ring-opening and hydrogenation , 2012 .

[34]  M. Illán-Gómez,et al.  Influence of Pt addition to Ni catalysts on the catalytic performance for long term dry reforming of methane , 2012 .

[35]  Wilhelm Kuckshinrichs,et al.  Worldwide innovations in the development of carbon capture technologies and the utilization of CO2 , 2012 .

[36]  Peng Zhang,et al.  Effect of a second metal (Y, K, Ca, Mn or Cu) addition on the carbon dioxide reforming of methane over nanostructured palladium catalysts , 2012 .

[37]  Jurka Batista,et al.  Efficient catalytic abatement of greenhouse gases: Methane reforming with CO2 using a novel and thermally stable Rh–CeO2 catalyst , 2012 .

[38]  E. Sousa-Aguiar,et al.  Ni–Nb-Based Mixed Oxides Precursors for the Dry Reforming of Methane , 2011 .

[39]  A. Kiennemann,et al.  CO2 reforming of methane over Ce-Zr-Ni-Me mixed catalysts , 2010 .

[40]  M. Daturi,et al.  Meso–macroporous zirconia modified with niobia as support for platinum—Acidic and basic properties , 2010 .

[41]  Subhash Bhatia,et al.  Catalytic Technology for Carbon Dioxide Reforming of Methane to Synthesis Gas , 2009 .

[42]  J. Wu,et al.  Bimetallic Rh–Ni/BN catalyst for methane reforming with CO2 , 2009 .

[43]  I. Sobczak The role of niobium in MCM-41 supported with Pt and Au—A comparative study of physicochemical and catalytic properties , 2009 .

[44]  C. Gigola,et al.  Methane Reforming with Carbon Dioxide. The Behavior of Pd/α-Al2O3 and Pd−CeOx/α-Al2O3 Catalysts , 2005 .

[45]  R. Landers,et al.  Adsorption of phosphoric acid on niobium oxide coated cellulose fiber: preparation, characterization and ion exchange property , 2005 .

[46]  Enrique Iglesia,et al.  Mechanism and Site Requirements for Activation and Chemical Conversion of Methane on Supported Pt Clusters and Turnover Rate Comparisons among Noble Metals , 2004 .

[47]  A. Tsyganok Dry reforming of methane over supported noble metals: a novel approach to preparing catalysts , 2003 .

[48]  M. Ziolek Niobium-containing catalysts—the state of the art , 2003 .

[49]  Chen-Bin Wang,et al.  Effects of the addition of titania on the thermal characterization of alumina-supported palladium , 2002 .

[50]  Katsutoshi Nagaoka Titania supported ruthenium as a coking-resistant catalyst for high pressure dry reforming of methane , 2001 .

[51]  Guoxing Xiong,et al.  Partial oxidation of propane to syngas over nickel supported catalysts modified by alkali metal oxides and rare-earth metal oxides , 2001 .

[52]  James A. Anderson,et al.  Mechanistic aspects of the dry reforming of methane over ruthenium catalysts , 2000 .

[53]  F. B. Noronha,et al.  The promoting effect of Nb2O5 addition to Pd/Al2O3 catalysts on propane oxidation , 2000 .

[54]  J. Rostrup-Nielsen,et al.  Innovation and science in the process industry: Steam reforming and hydrogenolysis , 1999 .

[55]  Inmaculada Rodríguez-Ramos,et al.  Comparative study at low and medium reaction temperatures of syngas production by methane reforming with carbon dioxide over silica and alumina supported catalysts , 1998 .

[56]  J. Lercher,et al.  Mono and bifunctional pathways of CO2/CH4 reforming over Pt and Rh based catalysts , 1998 .

[57]  M. Boudart,et al.  Turnover Rates in Heterogeneous Catalysis , 1995 .

[58]  F. Solymosi,et al.  Catalytic reaction of methane with carbon dioxide over supported palladium , 1994 .

[59]  Jens R. Rostrup-Nielsen,et al.  CO2-Reforming of Methane over Transition Metals , 1993 .