Spectroscopic Observation of Dual Catalytic Sites During Oxidation of CO on a Au/TiO2 Catalyst

The low-temperature oxidation of carbon monoxide proceeds initially with oxygen molecules that bridge titanium and gold sites. The prevailing view of CO oxidation on gold-titanium oxide (Au/TiO2) catalysts is that the reaction occurs on metal sites at the Au/TiO2 interface. We observed dual catalytic sites at the perimeter of 3-nanometer Au particles supported on TiO2 during CO oxidation. Infrared-kinetic measurements indicate that O-O bond scission is activated by the formation of a CO-O2 complex at dual Ti-Au sites at the Au/TiO2 interface. Density functional theory calculations, which provide the activation barriers for the formation and bond scission of the CO-O2 complex, confirm this model as well as the measured apparent activation energy of 0.16 electron volt. The observation of sequential delivery and reaction of CO first from TiO2 sites and then from Au sites indicates that catalytic activity occurs at the perimeter of Au nanoparticles.

[1]  Bernard Delmon,et al.  Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4 , 1993 .

[2]  Georg Kresse,et al.  Dissociation and sticking of H 2 on the Ni(111), (100), and (110) substrate , 2000 .

[3]  C. Morterra,et al.  Structural and morphological modifications of sintering microcrystalline TiO2: an XRD, HRTEM and FTIR study , 1993 .

[4]  M. Flytzani-Stephanopoulos,et al.  Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts , 2003, Science.

[5]  C. Louis,et al.  Oxidation of gold metal particles supported on TiO2: an FTIR study by means of low-temperature CO adsorption , 2007 .

[6]  Kazuhiro Takanabe,et al.  Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters. , 2011, Journal of the American Chemical Society.

[7]  Wenfu Yan,et al.  Evaluation of the Au size effect: CO oxidation catalyzed by Au/TiO2. , 2006 .

[8]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[9]  J. Nørskov,et al.  Insights into the reactivity of supported Au nanoparticles: combining theory and experiments , 2007 .

[10]  Núria López,et al.  On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation , 2004 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  H. Freund,et al.  Surface chemistry of catalysis by gold , 2004 .

[13]  B. Koel,et al.  CO adsorption and reaction on clean and oxygen-covered Au(211) surfaces. , 2006, The journal of physical chemistry. B.

[14]  P Hu,et al.  Identifying an O2 supply pathway in CO oxidation on Au/TiO2(110): a density functional theory study on the intrinsic role of water. , 2006, Journal of the American Chemical Society.

[15]  Isao Nakamura,et al.  Hydrogen dissociation by gold clusters. , 2009, Angewandte Chemie.

[16]  C. Louis,et al.  Alternative Methods for the Preparation of Gold Nanoparticles Supported on TiO2 , 2002 .

[17]  J. Yates,et al.  Direct Spectroscopic Observation of the Role of Humidity in Surface Diffusion through an Ionic Adsorbent Powder. The Behavior of Adsorbed Pyridine on Nanocrystalline MgO , 2009 .

[18]  Daan Frenkel,et al.  The steady state of heterogeneous catalysis, studied by first-principles statistical mechanics. , 2004, Physical review letters.

[19]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[20]  John T Yates,et al.  Surface chemistry: Key to control and advance myriad technologies , 2011, Proceedings of the National Academy of Sciences.

[21]  J. Nørskov,et al.  CO oxidation on rutile-supported au nanoparticles. , 2005, Angewandte Chemie.

[22]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[23]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[24]  J. Yates,et al.  IR Spectroscopic Measurement of Diffusion Kinetics of Chemisorbed Pyridine through TiO2 Particles , 2010 .

[25]  A. Corma,et al.  Unravelling the Nature of Gold Surface Sites by Combining IR Spectroscopy and DFT Calculations. Implications in Catalysis , 2009 .

[26]  J. Nørskov,et al.  Making gold less noble , 2000 .

[27]  T. Akita,et al.  Au/TiO2 Nanosized Samples: A Catalytic, TEM, and FTIR Study of the Effect of Calcination Temperature on the CO Oxidation , 2001 .

[28]  J. Hafner,et al.  First-principles study of the adsorption of atomic H on Ni (111), (100) and (110) , 2000 .

[29]  D. Meier,et al.  The influence of metal cluster size on adsorption energies: CO adsorbed on Au clusters supported on TiO2. , 2004, Journal of the American Chemical Society.

[30]  G. Watson,et al.  A DFT+U description of oxygen vacancies at the TiO2 rutile (110) surface , 2007 .

[31]  Jinlong Yang,et al.  What are the adsorption sites for CO on the reduced TiO2(110)-1 x 1 surface? , 2009, Journal of the American Chemical Society.

[32]  John T. Yates,et al.  CO chemisorption on TiO2(110): Oxygen vacancy site influence on CO adsorption , 1995 .

[33]  B. L. Maschhoff,et al.  Interaction of water, oxygen, and hydrogen with TiO2(110) surfaces having different defect densities , 1992 .

[34]  J. Yates,et al.  Interaction of CO with Oxygen Adatoms on TiO2(110) , 2011 .

[35]  R. Behm,et al.  CO adsorption energy on planar Au/TiO2 model catalysts under catalytically relevant conditions , 2007 .

[36]  B. Gates,et al.  Simultaneous Presence of Cationic and Reduced Gold in Functioning MgO-Supported CO Oxidation Catalysts: Evidence from X-ray Absorption Spectroscopy , 2002 .

[37]  Xue-qing Gong,et al.  Catalytic role of metal oxides in gold-based catalysts: a first principles study of CO oxidation on TiO2 supported Au. , 2003, Physical review letters.

[38]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[39]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[40]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[41]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[42]  R. Behm,et al.  Reactive oxygen on a Au/TiO2 supported catalyst , 2009 .

[43]  A. Chiorino,et al.  FTIR Study of CO Oxidation on Au/TiO2 at 90 K and Room Temperature. An Insight into the Nature of the Reaction Centers , 2000 .

[44]  M. S. Chen,et al.  The Structure of Catalytically Active Gold on Titania , 2004, Science.

[45]  M. Haruta,et al.  Vital role of moisture in the catalytic activity of supported gold nanoparticles. , 2004, Angewandte Chemie.

[46]  J. Ashby References and Notes , 1999 .

[47]  K. Stevenson,et al.  Kinetic evaluation of highly active supported gold catalysts prepared from monolayer-protected clusters: an experimental Michaelis-Menten approach for determining the oxygen binding constant during CO oxidation catalysis. , 2008, Journal of the American Chemical Society.

[48]  B. Hammer,et al.  Adsorption of O2 and oxidation of CO at Au nanoparticles supported by TiO2(110). , 2004, The Journal of chemical physics.

[49]  S. Linic,et al.  Geometric and electronic characteristics of active sites on TiO2-supported Au nano-catalysts: insights from first principles. , 2009, Physical chemistry chemical physics : PCCP.

[50]  G. Henkelman,et al.  A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives , 1999 .

[51]  S. Ito,et al.  HELIX-COIL TRANSITION OF POLY-α,L-GLUTAMIC ACID IN AQUEOUS SOLUTION STUDIED BY THE DISSOCIATION FIELD EFFECT RELAXATION METHOD , 1973 .

[52]  Jinlong Yang,et al.  Adsorption of CO on Rutile TiO2 (110)-1 × 1 Surface with Preadsorbed O Adatoms , 2010 .

[53]  J. G. Wang,et al.  Role of Au(+) in supporting and activating Au(7) on TiO(2)(110). , 2006, Physical review letters.

[54]  D. Bianchi,et al.  Heats of adsorption of linear CO species adsorbed on the Au degrees and Ti+delta sites of a 1% Au/TiO2 catalyst using in situ FTIR spectroscopy under adsorption equilibrium. , 2004, Journal of the American Chemical Society.

[55]  J. Hrbek,et al.  Activity of CeOx and TiOx Nanoparticles Grown on Au(111) in the Water-Gas Shift Reaction , 2007, Science.

[56]  J. Yates,et al.  Wide temperature range IR spectroscopy cell for studies of adsorption and desorption on high area solids , 1988 .

[57]  F. Liu,et al.  Nature of reactive O2 and slow CO2 evolution kinetics in CO oxidation by TiO2 supported Au cluster. , 2006, The Journal of chemical physics.