Processing laser ablated plasmonic nanoparticle aerosols with nonthermal dielectric barrier discharge jets of argon and helium and plasma induced effects

[1]  V. Rueda,et al.  Experimental Study of a Nonthermal DBD-Driven Plasma Jet System Using Different Supply Methods , 2022, Plasma.

[2]  N. Ohnishi,et al.  Development of a flexible dielectric-barrier-discharge plasma actuator fabricated by inkjet printing using silver nanoparticles-based ink , 2021 .

[3]  M. Kushner,et al.  Positive charging of grains in an afterglow plasma is enhanced by ions drifting in an electric field , 2021, Physics of Plasmas.

[4]  S. Khan,et al.  Theoretical–Computational Study of Atmospheric DBD Plasma and Its Utility for Nanoscale Biocompatible Plasmonic Coating , 2021, Molecules.

[5]  R. Pilot,et al.  Silver nanoparticle aggregates: Wavelength dependence of their SERS properties in the first transparency window of biological tissues , 2021 .

[6]  Tayyaba Bibi,et al.  Assessment of engineered nanosilver as an alternative nano-antibiotic in marine water pollution using biomarker of fish cell line , 2021, Toxicology Research and Application.

[7]  Haotian Gao,et al.  On the charged aerosols generated by atmospheric pressure non‐equilibrium plasma , 2020, High Voltage.

[8]  S. Khan,et al.  Silver nanoparticle films by flowing gas atmospheric pulsed laser deposition and application to surface‐enhanced Raman spectroscopy , 2020, International Journal of Energy Research.

[9]  K. Kostov,et al.  Properties of DBD Plasma Jets Using Powered Electrode With and Without Contact With the Plasma , 2020, IEEE Transactions on Plasma Science.

[10]  S. Khan,et al.  A new strategy of using dielectric barrier discharge plasma in tubular geometry for surface coating and extension to biomedical application. , 2020, The Review of scientific instruments.

[11]  G. Yeom,et al.  Direct nanoparticle coating using atmospheric plasma jet , 2020, Journal of Nanoparticle Research.

[12]  J. Creel,et al.  Various pulsed laser deposition methods for preparation of silver-sensitised glass and paper substrates for surface-enhanced Raman spectroscopy , 2019, Applied Physics A.

[13]  Christophe Leys,et al.  The generation and transport of reactive nitrogen species from a low temperature atmospheric pressure air plasma source. , 2018, Physical chemistry chemical physics : PCCP.

[14]  Shaozheng Hu,et al.  In situ synthesis of sulfur doped carbon nitride with enhanced photocatalytic performance using DBD plasma treatment under H 2 S atmosphere , 2018, Journal of Physics and Chemistry of Solids.

[15]  P. Rudolf von Rohr,et al.  Lactose powder flowability enhancement by atmospheric pressure plasma treatment , 2018, Plasma Processes and Polymers.

[16]  A. Pokle,et al.  Atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver with flowing gas and flowing atmospheric plasma , 2018 .

[17]  G. Duesberg,et al.  Atmospheric pulsed laser deposition and thermal annealing of plasmonic silver nanoparticle films , 2017, Nanotechnology.

[18]  M. Keidar,et al.  Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine , 2017 .

[19]  Ronny Brandenburg,et al.  Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments , 2017 .

[20]  B. Shokri,et al.  Cylindrical dielectric barrier discharge plasma catalytic effect on chemical methods of silver nano-particle production , 2016 .

[21]  Jeslin J. Wu,et al.  Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications. , 2016, Chemical reviews.

[22]  Ram P. Gandhiraman,et al.  Plasma engineering of graphene , 2016 .

[23]  M. Havenith,et al.  Interaction of an argon plasma jet with a silicon wafer , 2016 .

[24]  Y. Mok,et al.  Dielectric Barrier Discharge (DBD) Plasma Assisted Synthesis of Ag2O Nanomaterials and Ag2O/RuO2 Nanocomposites , 2016, Nanomaterials.

[25]  Gian Luca Delzanno,et al.  Orbital-motion-limited theory of dust charging and plasma response , 2014, 1503.07820.

[26]  J. Franzke,et al.  Discussion of fundamental processes in dielectric barrier discharges used for soft ionization , 2014 .

[27]  H. Nishiyama,et al.  Glow-Like Helium and Filament-Like Argon Plasma Jets of Using a Dielectric Barrier Configuration at Atmospheric Pressure , 2014, IEEE Transactions on Plasma Science.

[28]  Longwei Chen,et al.  Dry plasma synthesis of graphene oxide–Ag nanocomposites: A simple and green approach , 2014 .

[29]  T. Itina,et al.  Nanoparticle formation by laser ablation in air and by spark discharges at atmospheric pressure , 2013 .

[30]  Y. Mok,et al.  A dielectric barrier discharge (DBD) plasma reactor: an efficient tool to prepare novel RuO2 nanorods , 2013 .

[31]  Xian-Jun Shao,et al.  Comparative study on the atmospheric pressure plasma jets of helium and argon , 2012 .

[32]  V. Puech,et al.  On atmospheric-pressure non-equilibrium plasma jets and plasma bullets , 2012 .

[33]  T. Hyde,et al.  Modeling Agglomeration of Dust Particles in Plasma , 2011, 1111.0037.

[34]  D. O’Connell,et al.  Electron dynamics and plasma jet formation in a helium atmospheric pressure dielectric barrier discharge jet , 2011 .

[35]  T. Hyde,et al.  CHARGING AND COAGULATION OF DUST IN PROTOPLANETARY PLASMA ENVIRONMENTS , 2011, 1104.5677.

[36]  F. Gensdarmes,et al.  Electrical properties of airborne nanoparticles produced by a commercial spark-discharge generator , 2010 .

[37]  Mikhail N. Shneider,et al.  Limitations of the DBD effects on the external flow , 2010 .

[38]  Y. Nagasaki,et al.  Preparation of Stable Water-Dispersible PEGylated Gold Nanoparticles Assisted by Nonequilibrium Atmospheric-Pressure Plasma Jets , 2009 .

[39]  Chi-Lung Chang,et al.  Diamond-like carbon thin films synthesis by low temperature atmospheric pressure plasma method , 2009 .

[40]  J. Borra Charging of aerosol and nucleation in atmospheric pressure electrical discharges , 2008 .

[41]  Guan-jun Zhang,et al.  DBD Plasma Jet in Atmospheric Pressure Argon , 2008, IEEE Transactions on Plasma Science.

[42]  Eric Moreau,et al.  Electric wind produced by a surface dielectric barrier discharge operating in air at different pressures: aeronautical control insights , 2008 .

[43]  A. Heijden,et al.  Synthesis and coating of copper oxide nanoparticles using atmospheric pressure plasmas , 2007 .

[44]  V. Vons,et al.  Nanoparticle production using atmospheric pressure cold plasma , 2006 .

[45]  Myoungseok Lee,et al.  Platinum nanoparticles prepared by a plasma-chemical reduction method , 2005 .

[46]  U. Riebel,et al.  A new corona discharge-based aerosol charger for submicron particles with low initial charge , 2004 .

[47]  Louis E. Brus,et al.  Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals , 2003 .

[48]  K. T. Whitby,et al.  On the theory of charging of aerosol particles by unipolar ions in the absence of an applied electric field , 1967 .

[49]  Plasma at the Nanoscale , 2022 .

[50]  J. Hao,et al.  Improving the Removal Efficiency of Elemental Mercury by Pre-Existing Aerosol Particles in Double Dielectric Barrier Discharge Treatments , 2015 .

[51]  Y. Mok,et al.  Dielectric barrier discharge plasma-mediated synthesis of several oxide nanomaterials and its characterization , 2015 .

[52]  Massoud Massoudi Farid,et al.  Anti-agglomeration of spark discharge-generated aerosols via unipolar air ions , 2014 .

[53]  G. Whitesides,et al.  AC Electric Fields Drive Steady Flows in Flames , 2012 .

[54]  N. Farid,et al.  Effect of ambient gas conditions on laser-induced copper plasma and surface morphology , 2011 .

[55]  K. Tam,et al.  Chapter 5 Chemical Methods for Preparation of Nanoparticles in Solution , 2008 .