Entanglement, EPR steering, and Bell-nonlocality criteria for multipartite higher-spin systems

We develop criteria to detect three classes of nonlocality that have been shown by Wiseman et al. [Phys. Rev. Lett. 98, 140402 (2007)] to be nonequivalent: entanglement, EPR steering, and the failure of local hidden-variable theories. We use the approach of Cavalcanti et al. [Phys. Rev. Lett. 99, 210405 (2007)] for continuous variables to develop the nonlocality criteria for arbitrary spin observables defined on a discrete Hilbert space. The criteria thus apply to multisite qudits, i.e., systems of fixed dimension $d$, and take the form of inequalities. We find that the spin moment inequalities that test local hidden variables (Bell inequalities) can be violated for arbitrary $d$ by optimized highly correlated nonmaximally entangled states provided the number of sites $N$ is high enough. On the other hand, the spin inequalities for entanglement are violated and thus detect entanglement for such states, for arbitrary $d$ and $N$, and with a violation that increases with $N$. We show that one of the moment entanglement inequalities can detect the entanglement of an arbitrary generalized multipartite Greenberger-Horne-Zeilinger state. Because they involve the natural observables for atomic systems, the relevant spin-operator correlations should be readily observable in trapped ultracold atomic gases and ion traps.

[1]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[2]  P. Drummond,et al.  Bell inequalities for continuous-variable measurements , 2010, 1005.2208.

[3]  Seung-Woo Lee,et al.  Maximal violation of tight Bell inequalities for maximal high-dimensional entanglement , 2008, 0803.3097.

[4]  Klaus Mølmer,et al.  Entanglement and extreme spin squeezing. , 2000, Physical review letters.

[5]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  W. Son,et al.  Generic Bell inequalities for multipartite arbitrary dimensional systems. , 2005, Physical review letters.

[7]  Pérès,et al.  Finite violation of a Bell inequality for arbitrarily large spin. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[8]  Reid,et al.  Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. , 1989, Physical review. A, General physics.

[9]  General correlation functions of the Clauser-Horne-Shimony-Holt inequality for arbitrarily high-dimensional systems. , 2003, Physical review letters.

[10]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[11]  Akira Furusawa,et al.  Detecting genuine multipartite continuous-variable entanglement , 2003 .

[12]  M. Hillery,et al.  Conditions for entanglement in multipartite systems , 2010, 1005.4453.

[13]  Mark Hillery,et al.  Entanglement conditions for two-mode states. , 2006, Physical review letters.

[14]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[15]  S. J. van Enk,et al.  Characterization of Multipartite Entanglement for One Photon Shared Among Four Optical Modes , 2009, Science.

[16]  P. Drummond,et al.  Testing for multipartite quantum nonlocality using functional bell inequalities. , 2009, Physical review letters.

[17]  Ardehali Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[18]  P. Drummond Violations of Bell's Inequality in Cooperative States , 1983 .

[19]  B. Yurke,et al.  Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. , 1986, Physical review letters.

[20]  A. C. Doherty,et al.  Entanglement, einstein-podolsky-rosen correlations, bell nonlocality, and steering , 2007, 0709.0390.

[21]  C. J. Foster,et al.  Bell inequalities for continuous-variable correlations. , 2007, Physical review letters.

[22]  Violation of multiparticle Bell inequalities for low- and high-flux parametric amplification using both vacuum and entangled input states , 2001, quant-ph/0104139.

[23]  B. Julsgaard,et al.  Experimental long-lived entanglement of two macroscopic objects , 2001, Nature.

[24]  J. Latorre,et al.  Quantum nonlocality in two three-level systems , 2001, quant-ph/0111143.

[25]  Zeilinger,et al.  Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits , 2000, Physical review letters.

[26]  C. Ross Found , 1869, The Dental register.

[27]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[28]  M. Oberthaler,et al.  Squeezing and entanglement in a Bose–Einstein condensate , 2008, Nature.

[29]  S M Roy Multipartite separability inequalities exponentially stronger than local reality inequalities. , 2005, Physical review letters.

[30]  Yun Li,et al.  Atom-chip-based generation of entanglement for quantum metrology , 2010, Nature.

[31]  L. C. Kwek,et al.  Violating Bell inequalities maximally for two d-dimensional systems , 2006 .

[32]  R. Penrose Quantum computation, entanglement and state reduction , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[33]  D. Deng,et al.  Tight correlation-function Bell inequality for multipartite d-dimensional systems , 2008, 0809.1713.

[34]  Anthony J Leggett,et al.  Macroscopic Quantum Systems and the Quantum Theory of Measurement (Progress in Statistical and Solid State Physics--In Commemoration of the Sixtieth Birthday of Ryogo Kubo) -- (Statistical Physics) , 1980 .

[35]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[36]  N. D. Mermin,et al.  Quantum mechanics vs local realism near the classical limit: A Bell inequality for spin s , 1980 .

[37]  H. M. Wiseman,et al.  Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox , 2009, 0907.1109.

[38]  W. Vogel,et al.  Quaternions, octonions and Bell-type inequalities , 2008, 0803.0913.

[39]  Ignacio Villanueva,et al.  Necessary and sufficient detection efficiency for the mermin inequalities. , 2007, Physical review letters.

[40]  S. Massar,et al.  Bell inequalities for arbitrarily high-dimensional systems. , 2001, Physical review letters.

[41]  E. Schrödinger Probability relations between separated systems , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.

[42]  N. Gisin,et al.  Maximal violation of Bell's inequality for arbitrarily large spin , 1992 .

[43]  H. Hofmann,et al.  Violation of local uncertainty relations as a signature of entanglement , 2002, quant-ph/0212090.

[44]  A. Peres All the Bell Inequalities , 1998, quant-ph/9807017.

[45]  M. Hillery,et al.  Detecting entanglement with non-hermitian operators , 2009, 0910.4567.

[46]  A. V. Belinskii,et al.  Interference of light and Bell's theorem , 1993 .

[47]  Kiel T. Williams,et al.  Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.

[48]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[49]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[50]  W. P. Bowen,et al.  Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications , 2008, 0806.0270.

[51]  D. J. Saunders,et al.  Experimental EPR-steering using Bell-local states , 2009, 0909.0805.

[52]  Svetlichny,et al.  Distinguishing three-body from two-body nonseparability by a Bell-type inequality. , 1987, Physical review. D, Particles and fields.

[53]  Travis Norsen,et al.  Bell's theorem , 2011, Scholarpedia.

[54]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .