The eukaryotic tree of life: endosymbiosis takes its TOL.

Resolving the structure of the eukaryotic tree of life remains one of the most important and challenging tasks facing biologists. The notion of six eukaryotic 'supergroups' has recently gained some acceptance, and several papers in 2007 suggest that resolution of higher taxonomic levels is possible. However, in organisms that acquired photosynthesis via secondary (i.e. eukaryote-eukaryote) endosymbiosis, the host nuclear genome is a mosaic of genes derived from two (or more) nuclei, a fact that is often overlooked in studies attempting to reconstruct the deep evolutionary history of eukaryotes. Accurate identification of gene transfers and replacements involving eukaryotic donor and recipient genomes represents a potentially formidable challenge for the phylogenomics community as more protist genomes are sequenced and concatenated data sets grow.

[1]  J. Stiller,et al.  Plastid endosymbiosis, genome evolution and the origin of green plants. , 2007, Trends in plant science.

[2]  P. Keeling,et al.  Nucleus-Encoded, Plastid-Targeted Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Indicates a Single Origin for Chromalveolate Plastids , 2003 .

[3]  Sabine Cornelsen,et al.  Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[4]  T. Cavalier-smith The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. , 2002, International journal of systematic and evolutionary microbiology.

[5]  B Franz Lang,et al.  The tree of eukaryotes. , 2005, Trends in ecology & evolution.

[6]  J. Palmer,et al.  An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters , 2006, BMC Biology.

[7]  O. Hoegh‐Guldberg,et al.  A photosynthetic alveolate closely related to apicomplexan parasites , 2008, Nature.

[8]  Richard H. Ree,et al.  Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. , 2008, Systematic biology.

[9]  T. Cavalier-smith Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[10]  T. Cavalier-smith Principles of Protein and Lipid Targeting in Secondary Symbiogenesis: Euglenoid, Dinoflagellate, and Sporozoan Plastid Origins and the Eukaryote Family Tree 1 , 2 , 1999, The Journal of eukaryotic microbiology.

[11]  Laura Wegener Parfrey,et al.  Evaluating Support for the Current Classification of Eukaryotic Diversity , 2006, PLoS genetics.

[12]  J. Archibald,et al.  Jumping Genes and Shrinking Genomes ‐ Probing the Evolution of Eukaryotic Photosynthesis with Genomics , 2005, IUBMB life.

[13]  B. Lang,et al.  Toward Resolving the Eukaryotic Tree: The Phylogenetic Positions of Jakobids and Cercozoans , 2007, Current Biology.

[14]  K. Misawa,et al.  Phylogeny of primary photosynthetic eukaryotes as deduced from slowly evolving nuclear genes. , 2007, Molecular biology and evolution.

[15]  A. Simpson,et al.  The real ‘kingdoms’ of eukaryotes , 2004, Current Biology.

[16]  A. Bodyl,et al.  Did the peridinin plastid evolve through tertiary endosymbiosis? A hypothesis , 2006 .

[17]  Jessica C Kissinger,et al.  A first glimpse into the pattern and scale of gene transfer in Apicomplexa. , 2004, International journal for parasitology.

[18]  J. McInerney,et al.  The prokaryotic tree of life: past, present... and future? , 2008, Trends in ecology & evolution.

[19]  Debashish Bhattacharya,et al.  Horizontal gene transfer in chromalveolates , 2007, BMC Evolutionary Biology.

[20]  Jessica C Kissinger,et al.  Phylogenomic evidence supports past endosymbiosis, intracellular and horizontal gene transfer in Cryptosporidium parvum , 2004, Genome Biology.

[21]  P. Keeling,et al.  A complex and punctate distribution of three eukaryotic genes derived by lateral gene transfer , 2007, BMC Evolutionary Biology.

[22]  P. Mackiewicz,et al.  The intracellular cyanobacteria of Paulinella chromatophora: endosymbionts or organelles? , 2007, Trends in microbiology.

[23]  D. Bhattacharya,et al.  Tertiary endosymbiosis driven genome evolution in dinoflagellate algae. , 2005, Molecular biology and evolution.

[24]  P. Keeling,et al.  Recycled plastids: a 'green movement' in eukaryotic evolution. , 2002, Trends in genetics : TIG.

[25]  Lynn Margulis,et al.  Five Kingdoms: An Illustrated Guide to the Phyla of Life on Earth , 1982 .

[26]  P. Keeling,et al.  SYMBIOTIC ORIGIN OF A NOVEL ACTIN GENE IN THE CRYPTOPHYTE, PYRENOMONAS HELGOLANDII , 2000, Molecular biology and evolution.

[27]  G. McFadden,et al.  The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. , 2007, Molecular biology and evolution.

[28]  R. Whittaker New concepts of kingdoms of organisms , 1969 .

[29]  P. Keeling,et al.  Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A. Weber,et al.  How do endosymbionts become organelles? Understanding early events in plastid evolution , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[31]  N. Patron,et al.  Gene Replacement of Fructose-1,6-Bisphosphate Aldolase Supports the Hypothesis of a Single Photosynthetic Ancestor of Chromalveolates , 2004, Eukaryotic Cell.

[32]  Naoko T. Onodera,et al.  Diversity of secondary endosymbiont-derived actin-coding genes in cryptomonads and their evolutionary implications , 2006, Journal of Plant Research.

[33]  W. Martin,et al.  Genome history in the symbiotic hybrid Euglena gracilis. , 2007, Gene.

[34]  Y. Inagaki,et al.  Multiple Gene Phylogenies Support the Monophyly of Cryptomonad and Haptophyte Host Lineages , 2007, Current Biology.

[35]  M. L. Teles-Grilo,et al.  Is there a plastid in Perkinsus atlanticus (Phylum Perkinsozoa)? , 2007, European journal of protistology.

[36]  W. Martin,et al.  Higher-plant chloroplast and cytosolic 3-phosphoglycerate kinases: a case of endosymbiotic gene replacement , 2004, Plant Molecular Biology.

[37]  A. Bodyl DO PLASTID‐RELATED CHARACTERS SUPPORT THE CHROMALVEOLATE HYPOTHESIS? 1 , 2005 .

[38]  J. Palmer,et al.  THE SYMBIOTIC BIRTH AND SPREAD OF PLASTIDS: HOW MANY TIMES AND WHODUNIT? , 2003 .

[39]  E. Suzuki,et al.  Metabolic symbiosis and the birth of the plant kingdom. , 2008, Molecular biology and evolution.

[40]  J. Archibald,et al.  Nucleomorph genomes: structure, function, origin and evolution. , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[41]  B. Stoebe,et al.  Gene-cluster analysis in chloroplast genomics. , 1999, Trends in genetics : TIG.

[42]  P. Keeling,et al.  Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. , 2003, Molecular biology and evolution.

[43]  W. Martin,et al.  Eukaryotic evolution, changes and challenges , 2006, Nature.

[44]  Laura Baxter,et al.  Phytophthora Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis , 2006, Science.

[45]  Debashish Bhattacharya,et al.  A molecular timeline for the origin of photosynthetic eukaryotes. , 2004, Molecular biology and evolution.

[46]  Motomi Ito,et al.  Origins of the secondary plastids of Euglenophyta and Chlorarachniophyta as revealed by an analysis of the plastid‐targeting, nuclear‐encoded gene psbO 1 , 2007 .

[47]  Peter H. Raven,et al.  Five Kingdoms: An Illustrated Guide to the Phyla of Life on Earth , 1988 .

[48]  D. Leister,et al.  An improved prediction of chloroplast proteins reveals diversities and commonalities in the chloroplast proteomes of Arabidopsis and rice. , 2004, Gene.

[49]  D. Bhattacharya,et al.  Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates. , 2007, Molecular biology and evolution.

[50]  Edward Susko,et al.  Testing congruence in phylogenomic analysis. , 2008, Systematic biology.

[51]  P. Lockhart,et al.  Shopping for plastids. , 2007, Trends in plant science.

[52]  Kamran Shalchian-Tabrizi,et al.  Phylogenomics Reshuffles the Eukaryotic Supergroups , 2007, PloS one.

[53]  M. Ishikawa,et al.  Mass identification of chloroplast proteins of endosymbiont origin by phylogenetic profiling based on organism-optimized homologous protein groups. , 2005, Genome informatics. International Conference on Genome Informatics.

[54]  Andrei N Lupas,et al.  PhyloGenie: automated phylome generation and analysis. , 2004, Nucleic acids research.

[55]  Debashish Bhattacharya,et al.  Cyanobacterial Contribution to Algal Nuclear Genomes Is Primarily Limited to Plastid Functions , 2006, Current Biology.

[56]  Debashish Bhattacharya,et al.  PhyloSort: a user-friendly phylogenetic sorting tool and its application to estimating the cyanobacterial contribution to the nuclear genome of Chlamydomonas , 2008, BMC Evolutionary Biology.

[57]  John W. Stiller,et al.  A SINGLE ORIGIN OF PLASTIDS REVISITED: CONVERGENT EVOLUTION IN ORGANELLAR GENOME CONTENT 1 , 2003 .

[58]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[59]  M. Hasegawa,et al.  Gene transfer to the nucleus and the evolution of chloroplasts , 1998, Nature.

[60]  Naiara Rodríguez-Ezpeleta,et al.  Detecting and overcoming systematic errors in genome-scale phylogenies. , 2007, Systematic biology.

[61]  Fumiko Ohta,et al.  Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D , 2004, Nature.

[62]  Debashish Bhattacharya,et al.  Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates. , 2006, Molecular biology and evolution.

[63]  Debashish Bhattacharya,et al.  DEFINING THE MAJOR LINEAGES OF RED ALGAE (RHODOPHYTA) 1 , 2006 .