Active Vibration Control over the Flexible Structure of a Kitchen Hood

This paper presents the full analysis and the complete development of a system for mechanical vibration reduction in a kitchen hood by using piezoelectric actuators. The control system is based on a feedback controller whose action depends on a single acceleration sensor collocated with the actuator. A model of the collocated actuator-sensor pair mounted on the hood and a model of the disturbance are provided. A Minimum Variance (MV) controller is able to provide the theoretically best performance in terms of noise reduction. A single-tones Minimum Variance controller (resonant controller) provides quasi-optimal performance while maintaining the stability of the system. Two different resonant control laws have been designed: the first one operates without the information of the hood motor velocity; the second one is a more sophisticated controller, which also exploits the velocity information. Both controllers are effective in reducing the mechanical vibration with performances that well approximate those achievable with an MV controller. Overall, through the motor velocity’s information, the best performances are guaranteed with an 85% vibration reduction. The resonant control system without the motor velocity information provides the best compromise in terms of performances (75% of reduction) and complexity of the implemented system. Tests held in an anechoic chamber have shown the vibration reduction’s influence upon the acoustic noise.

[1]  André Preumont,et al.  Vibration Control of Active Structures: An Introduction , 2018 .

[2]  Sergio M. Savaresi,et al.  Notch filtering and multirate control for radial tracking in high-speed DVD-players , 2002, IEEE Trans. Consumer Electron..

[3]  Daniel J. Inman,et al.  Vibration suppression using smart structures , 1991 .

[4]  Alberto Leva,et al.  FPGA-based implementation of high-speed active noise and vibration controllers , 2011 .

[5]  Björn Wittenmark,et al.  On Self Tuning Regulators , 1973 .

[6]  S. O. R. Moheimani,et al.  Spatial resonant control with collocated piezoelectric actuator/sensor pairs , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[7]  Franco Bernelli-Zazzera,et al.  Sliding mode control of a large flexible space structure , 2000 .

[8]  Ieee Standards Board IEEE Standard on Piezoelectricity , 1996 .

[9]  Alexander Schirrer,et al.  Vibration damping of a flexible car body structure using piezo-stack actuators , 2008 .

[10]  Nesbitt W. Hagood,et al.  Modelling of Piezoelectric Actuator Dynamics for Active Structural Control , 1990 .

[11]  A. Smaili,et al.  Experimental fuzzy logic active vibration control , 2008, 2008 5th International Symposium on Mechatronics and Its Applications.

[12]  Michael J. Grimble,et al.  Generalized minimum variance control law revisited , 2007 .

[13]  Minh Q. Phan,et al.  Identification and control of mechanical systems , 2001 .

[14]  Phillip Vallone High-performance piezo-based self-sensor for structural vibration control , 1995, Smart Structures.

[15]  P. Hughes,et al.  Space structure vibration modes: How many exist? Which ones are important? , 1984, IEEE Control Systems Magazine.

[16]  Hing Cheung So,et al.  Adaptive algorithm for direct frequency estimation , 2004 .

[17]  Francesco Casella,et al.  Modeling and control for vibration suppression in a large flexible structure with jet thrusters and piezoactuators , 2002, IEEE Trans. Control. Syst. Technol..

[18]  Fabio Previdi,et al.  Yeast cell metabolism investigated by CO2 production and soft X-ray irradiation , 1999 .

[19]  S. Jain,et al.  Active Vibration Control of Glass-Epoxy Composite Box Beam Using Output Feedback , 2006, 2006 IEEE International Conference on Industrial Technology.

[20]  David Clarke,et al.  Self-tuning control , 1979 .

[21]  Ephrahim Garcia,et al.  A Self-Sensing Piezoelectric Actuator for Collocated Control , 1992 .

[22]  Han Tong Loh,et al.  A reliability model for piezoelectric actuators , 2005, 2005 International Power Engineering Conference.

[23]  Ronald L. Spangler,et al.  Use of piezoelectric devices to control snowboard vibrations , 1998, Smart Structures.

[24]  S. O. Reza Moheimani,et al.  Spatial resonant control of flexible structures-application to a piezoelectric laminate beam , 2001, IEEE Trans. Control. Syst. Technol..

[25]  Asoke K. Nandi,et al.  Fast frequency estimation and tracking using Lagrange interpolation , 1998 .

[26]  K. Åström Introduction to Stochastic Control Theory , 1970 .

[27]  Ta-Hsin Li,et al.  Tracking abrupt frequency changes , 1998 .

[28]  M. Balas,et al.  Feedback control of flexible systems , 1978 .

[29]  Wu Jiekang,et al.  A fast algorithm for frequency estimation of power systems in colored noises , 2005, Proceedings. IEEE SoutheastCon, 2005..

[30]  Thomas Parisini,et al.  Model-free actuator fault detection using a spectral estimation approach: the case of the DAMADICS benchmark problem , 2003 .

[31]  S. O. Reza Moheimani,et al.  Integral resonant control of collocated smart structures , 2007 .

[32]  S. O. Reza Moheimani,et al.  A survey of recent innovations in vibration damping and control using shunted piezoelectric transducers , 2003, IEEE Trans. Control. Syst. Technol..

[33]  Momoh Jimoh Emiyoka Salami,et al.  Active vibration control of a beam with piezoelectric patches: real-time implementation with xPC target , 2003, Proceedings of 2003 IEEE Conference on Control Applications, 2003. CCA 2003..

[34]  Mehrdad Moallem,et al.  Parameter selection and control design for vibration suppression using piezoelectric transducers , 2004 .

[35]  S. Joshi,et al.  On a class of marginally stable positive-real systems , 1996, IEEE Trans. Autom. Control..