Quantum multiscale entanglement renormalization ansatz channels.

Tensor network representations of many-body quantum systems can be described in terms of quantum channels. We focus on channels associated with the multiscale entanglement renormalization ansatz tensor network that has been recently introduced to efficiently describe critical systems. Our approach allows us to compute the multiscale entanglement renormalization ansatz correspondent to the thermodynamical limit of a critical system introducing a transfer matrix formalism, and to relate the system critical exponents to the convergence rates of the associated channels.

[1]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[2]  M. Raginsky Strictly contractive quantum channels and physically realizable quantum computers , 2001, quant-ph/0105141.

[3]  D Porras,et al.  Density matrix renormalization group and periodic boundary conditions: a quantum information perspective. , 2004, Physical review letters.

[4]  K. Hallberg New trends in density matrix renormalization , 2006, cond-mat/0609039.

[5]  R. Gohm Noncommutative Stationary Processes , 2004 .

[6]  G. Vidal,et al.  Entanglement renormalization and topological order. , 2007, Physical review letters.

[7]  K. Życzkowski,et al.  Geometry of Quantum States , 2007 .

[8]  U. Schollwoeck The density-matrix renormalization group , 2004, cond-mat/0409292.

[9]  Frank Verstraete,et al.  Quantum phase transitions in matrix product systems. , 2006, Physical review letters.

[10]  J. I. Cirac,et al.  Variational study of hard-core bosons in a two-dimensional optical lattice using projected entangled pair states , 2007 .

[11]  Royer Wigner function in Liouville space: A canonical formalism. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[12]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.

[13]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[14]  J Eisert,et al.  Unifying variational methods for simulating quantum many-body systems. , 2007, Physical review letters.

[15]  Lukasz Cincio,et al.  Multiscale entanglement renormalization ansatz in two dimensions: quantum Ising model. , 2007, Physical review letters.

[16]  V. Giovannetti,et al.  The generalized Lyapunov theorem and its application to quantum channels , 2006, quant-ph/0605197.

[17]  M B Plenio,et al.  Ground-state approximation for strongly interacting spin systems in arbitrary spatial dimension. , 2006, Physical review letters.

[18]  M. Fannes,et al.  Abundance of translation invariant pure states on quantum spin chains , 1992 .

[19]  G. Vidal Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.

[20]  Östlund,et al.  Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.

[21]  W Dür,et al.  Entanglement in spin chains and lattices with long-range Ising-type interactions. , 2005, Physical review letters.

[22]  G. Vidal,et al.  Simulation of time evolution with multiscale entanglement renormalization ansatz , 2008 .

[23]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[24]  D. DiVincenzo,et al.  Problem of equilibration and the computation of correlation functions on a quantum computer , 1998, quant-ph/9810063.