High catalytic activity of anatase titanium dioxide for decomposition of electrolyte solution in lithium ion battery

[1]  Yan‐Bing He,et al.  Carbon coating to suppress the reduction decomposition of electrolyte on the Li4Ti5O12 electrode , 2012 .

[2]  Yan‐Bing He,et al.  Effects of TiO2 crystal structure on the performance of Li4Ti5O12 anode material , 2012 .

[3]  J. Chen,et al.  One‐Dimensional Hierarchical Structures Composed of Novel Metal Oxide Nanosheets on a Carbon Nanotube Backbone and Their Lithium‐Storage Properties , 2011 .

[4]  Dominik Samuelis,et al.  Sustained Lithium‐Storage Performance of Hierarchical, Nanoporous Anatase TiO2 at High Rates: Emphasis on Interfacial Storage Phenomena , 2011 .

[5]  K. Müllen,et al.  Sandwich‐Like, Graphene‐Based Titania Nanosheets with High Surface Area for Fast Lithium Storage , 2011, Advanced materials.

[6]  Junhua Zhang,et al.  In situ Formation of TiO2 in Electrospun Poly(methyl methacrylate) Nanohybrids , 2011 .

[7]  Feng Li,et al.  Battery Performance and Photocatalytic Activity of Mesoporous Anatase TiO2 Nanospheres/Graphene Composites by Template‐Free Self‐Assembly , 2011 .

[8]  X. Lou,et al.  Graphene-supported anatase TiO2 nanosheets for fast lithium storage. , 2011, Chemical communications.

[9]  Xiaowei Zhao,et al.  Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. , 2011, Journal of the American Chemical Society.

[10]  Weishan Li,et al.  Synthesis of size-tunable anatase TiO₂ nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride-graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance. , 2010, ACS nano.

[11]  Xiao Hua Yang,et al.  Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance. , 2010, Chemical communications.

[12]  J. Yamaki,et al.  Electrochemical Properties of Trirutile-type Li2TiF6 as Cathode Active Material in Li-ion Batteries , 2010 .

[13]  Ji‐Guang Zhang,et al.  Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. , 2009, ACS nano.

[14]  C. M. Li,et al.  Novel porous anatase TiO2 nanorods and their high lithium electroactivity , 2007 .

[15]  Sylvie Grugeon,et al.  XPS Identification of the Organic and Inorganic Components of the Electrode/Electrolyte Interface Formed on a Metallic Cathode , 2005 .

[16]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[17]  Hua Chun Zeng,et al.  Preparation of Hollow Anatase TiO2 Nanospheres via Ostwald Ripening. , 2004, The journal of physical chemistry. B.

[18]  Fa-min Liu,et al.  Surface and optical properties of nanocrystalline anatase titania films grown by radio frequency reactive magnetron sputtering , 2002 .

[19]  F. Béguin,et al.  Mechanism of lithium electrosorption by activated carbons , 2002 .

[20]  B. Delley,et al.  Binding energy and electronic structure of small copper particles , 1983 .

[21]  B. Johansson,et al.  Calculated transition-metal surface core-level binding-energy shifts , 1980 .

[22]  D. A. Shirley,et al.  Relative effect of extra-atomic relaxation on Auger and binding-energy shifts in transition metals and salts , 1974 .

[23]  C. Nordling,et al.  Charge transfer in transition metal carbides and related compounds studied by ESCA , 1969 .

[24]  G. Janz,et al.  Preparation and Thermal Stability of Lithium Titanium Fluoride , 1958 .

[25]  Ilias Belharouak,et al.  Performance Degradation and Gassing of Li4Ti5O12/LiMn2O4 Lithium-Ion Cells , 2012 .

[26]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.