Theory and application of annealing algorithms for continuous optimization
暂无分享,去创建一个
Saul B. Gelfand | Peter C. Doerschuk | Mohamed Nahhas-Mohandes | S. Gelfand | P. Doerschuk | Mohamed Nahhas-Mohandes
[1] D. G. Brooks,et al. Computational experience with generalized simulated annealing over continuous variables , 1988 .
[2] Charles E. Clark,et al. Monte Carlo , 2006 .
[3] H. Kushner. Asymptotic global behavior for stochastic approximation and diffusions with slowly decreasing noise effects: Global minimization via Monte Carlo , 1987 .
[4] Steven G. Louie,et al. A Monte carlo simulated annealing approach to optimization over continuous variables , 1984 .
[5] S. Mitter,et al. Metropolis-type annealing algorithms for global optimization in R d , 1993 .
[6] William H. Press,et al. Simulated Annealing Optimization over Continuous Spaces , 1991 .
[7] M. E. Johnson,et al. Generalized simulated annealing for function optimization , 1986 .
[8] Sandro Ridella,et al. Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.
[9] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[10] S. Mitter,et al. Weak convergence of Markov chain sampling methods and annealing algorithms to diffusions , 1991 .
[11] S. Mitter,et al. Recursive stochastic algorithms for global optimization in R d , 1991 .
[12] Cecilia R. Aragon,et al. Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..