Control of III–V nanowire crystal structure by growth parameter tuning

In this work we investigate the variation of the crystal structure of gold-seeded III–V nanowires with growth parameters, in order to gain a cohesive understanding of these effects. We investigate six III–V materials: GaAs, InAs, GaP, InP, GaSb and InSb, over a variation of growth conditions. All six of these materials exhibit a cubic zinc blende structure in bulk, but twin planes and stacking faults, as well as a hexagonal wurtzite structure, are commonly observed in nanowires. Parameters which may affect the crystal structure include growth temperature and pressure, precursor molar fraction and V/III ratio, nanowire diameter and surface density, and impurity atoms. We will focus on temperature, precursor molar fraction and V/III ratio. Our observations are compared to previous reports in the literature of the III–V nanowire crystal structure, and interpreted in terms of existing models. We propose that changes in the crystal structure with growth parameters are directly related to changes in the stable side facets.

[1]  L. Samuelson,et al.  Structural investigations of core-shell nanowires using grazing incidence X-ray diffraction. , 2009, Nano letters.

[2]  R. Buczko,et al.  Modelling the structure of GaAs and InAs nanowires , 2008 .

[3]  C. Chang-Hasnain,et al.  Growth mechanisms and crystallographic structure of InP nanowires on lattice-mismatched substrates , 2008 .

[4]  Bas Ketelaars,et al.  Synergetic nanowire growth. , 2007, Nature nanotechnology.

[5]  Chennupati Jagadish,et al.  Unexpected benefits of rapid growth rate for III-V nanowires. , 2009, Nano letters.

[6]  L.-E. Wernersson,et al.  Vertical Enhancement-Mode InAs Nanowire Field-Effect Transistor With 50-nm Wrap Gate , 2008, IEEE Electron Device Letters.

[7]  G. P. Srivastava,et al.  Electronic structure of twinning superlattices , 1994 .

[8]  Gilles Patriarche,et al.  Why does wurtzite form in nanowires of III-V zinc blende semiconductors? , 2007, Physical review letters.

[9]  K. Dick,et al.  Effects of Supersaturation on the Crystal Structure of Gold Seeded III−V Nanowires , 2009 .

[10]  Elias Vlieg,et al.  Twinning superlattices in indium phosphide nanowires , 2008, Nature.

[11]  Srivastava,et al.  Electronic properties of twin boundaries and twinning superlattices in diamond-type and zinc-blende-type semiconductors. , 1993, Physical review. B, Condensed matter.

[12]  M. Aagesen,et al.  Facet structure of GaAs nanowires grown by molecular beam epitaxy , 2007 .

[13]  Chennupati Jagadish,et al.  Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures. , 2009, Nano letters.

[14]  A. F. Moses,et al.  Growth and characterization of wurtzite GaAs nanowires with defect-free zinc blende GaAsSb inserts. , 2008, Nano letters.

[15]  K. Dick,et al.  Controlled polytypic and twin-plane superlattices in iii-v nanowires. , 2009, Nature nanotechnology.

[16]  M. Koguchi,et al.  Crystal Structure Change of GaAs and InAs Whiskers from Zinc-Blende to Wurtzite Type , 1992 .

[17]  K. Dick,et al.  Precursor evaluation for in situ InP nanowire doping , 2008, Nanotechnology.

[18]  H. Tan,et al.  Growth mechanism of truncated triangular III-V nanowires. , 2007, Small.

[19]  Q. Ye,et al.  One-dimensional electron transport and thermopower in an individual InSb nanowire , 2006 .

[20]  V. Dubrovskii,et al.  Growth kinetics and crystal structure of semiconductor nanowires , 2008 .

[21]  L. Samuelson,et al.  Structural properties of 〈111〉B -oriented III–V nanowires , 2006, Nature materials.

[22]  F. Bechstedt,et al.  Surface influence on stability and structure of hexagon-shaped III-V semiconductor nanorods , 2007 .

[23]  Philippe Caroff,et al.  High-quality InAs/InSb nanowire heterostructures grown by metal-organic vapor-phase epitaxy. , 2008, Small.

[24]  L. M. Smith,et al.  Room temperature photocurrent spectroscopy of single zincblende and wurtzite InP nanowires , 2009 .

[25]  Christensen,et al.  Bonding and ionicity in semiconductors. , 1987, Physical review. B, Condensed matter.

[26]  B. Jacobs,et al.  Internal structure of multiphase zinc-blende wurtzite gallium nitride nanowires , 2008, Nanotechnology.

[27]  H. Shtrikman,et al.  Method for suppression of stacking faults in Wurtzite III-V nanowires. , 2009, Nano letters.

[28]  R. LaPierre,et al.  Control of GaAs nanowire morphology and crystal structure , 2008, Nanotechnology.

[29]  Chennupati Jagadish,et al.  Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. , 2007, Nano letters.

[30]  E. Lundgren,et al.  Direct observation of atomic scale surface relaxation in ortho twin structures in GaAs by XSTM , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  Chennupati Jagadish,et al.  High Purity GaAs Nanowires Free of Planar Defects: Growth and Characterization , 2008 .

[32]  A. Qteish,et al.  Ionicity scale based on the centers of maximally localized Wannier functions , 2007 .

[33]  S. T. Lee,et al.  Small-Diameter Silicon Nanowire Surfaces , 2003, Science.

[34]  V. Dubrovskii,et al.  Growth thermodynamics of nanowires and its application to polytypism of zinc blende III-V nanowires , 2008 .

[35]  R. LaPierre,et al.  Onset of stacking faults in InP nanowires grown by gas source molecular beam epitaxy , 2007 .

[36]  V. Nebol'sin,et al.  A mechanism of quasi-one-dimensional vapor phase growth of Si and GaP whiskers , 2008 .

[37]  S. Ciraci,et al.  First-principles study of GaAs nanowires , 2009, 0901.3425.

[38]  K. Dick,et al.  Preferential Interface Nucleation: An Expansion of the VLS Growth Mechanism for Nanowires , 2009 .

[39]  Federico Capasso,et al.  Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation , 2008 .

[40]  Theoretical investigations on the formation of wurtzite segments in group III–V semiconductor nanowires , 2008 .

[41]  Jonas Johansson,et al.  Growth related aspects of epitaxial nanowires , 2006 .

[42]  Federico Capasso,et al.  Optical properties of rotationally twinned InP nanowire heterostructures. , 2008, Nano letters.

[43]  T. Ito,et al.  An Empirical Potential Approach to Wurtzite–Zinc-Blende Polytypism in Group III–V Semiconductor Nanowires , 2006 .

[44]  L. Wernersson,et al.  GaAs/GaSb nanowire heterostructures grown by MOVPE , 2008 .

[45]  Hamann,et al.  Ballistic electron transmission through interfaces. , 1988, Physical review. B, Condensed matter.

[46]  P. Eklund,et al.  Coherent twinning phenomena: towards twinning superlattices in III-V semiconducting nanowires. , 2006, Nano letters.

[47]  Lars Samuelson,et al.  Solid-phase diffusion mechanism for GaAs nanowire growth , 2004, Microscopy and Microanalysis.

[48]  R. Banerjee,et al.  Structure of twins in GaAs nanowires grown by the vapour–liquid–solid process , 2006 .

[49]  K. Dick,et al.  Understanding the 3D structure of \mathrm {GaAs\langle 111\rangle B} nanowires , 2007 .

[50]  L. Samuelson,et al.  Growth and characterization of defect free GaAs nanowires , 2006 .

[51]  L. Largeau,et al.  Wurtzite to zinc blende phase transition in GaAs nanowires induced by epitaxial burying. , 2008, Nano letters.

[52]  R. LaPierre,et al.  A growth interruption technique for stacking fault-free nanowire superlattices , 2009, Nanotechnology.

[53]  Lars Samuelson,et al.  Strain mapping in free-standing heterostructured wurtzite InAs/InP nanowires , 2007 .

[54]  T. Mallouk,et al.  Effect of twinning on the photoluminescence and photoelectrochemical properties of indium phosphide nanowires grown on silicon (111). , 2008, Nano letters (Print).

[55]  Arden L. Moore,et al.  Phonon backscattering and thermal conductivity suppression in sawtooth nanowires , 2008 .

[56]  L. Samuelson,et al.  Measurements of the band gap of wurtzite InAs1−xPx nanowires using photocurrent spectroscopy , 2007 .

[57]  H. Jackson,et al.  The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires , 2009, Nanotechnology.

[58]  L. Samuelson,et al.  Phase segregation in AlInP shells on GaAs nanowires. , 2006, Nano letters.

[59]  Lars Samuelson,et al.  Defect-free InP nanowires grown in [001] direction on InP (001) , 2004 .

[60]  O. M. Gorbenko,et al.  Atomic structure of MBE-grown GaAs nanowhiskers , 2005 .

[61]  L. Samuelson,et al.  Size-selected gold nanoparticles by aerosol technology , 1999 .