Control of III–V nanowire crystal structure by growth parameter tuning
暂无分享,去创建一个
Philippe Caroff | Lars Samuelson | Knut Deppert | Jonas Johansson | Maria E. Messing | L. Reine Wallenberg | K. Dick | L. Samuelson | P. Caroff | M. Messing | K. Deppert | L. Wallenberg | L. Wallenberg | J. Johansson | J. Bolinsson | Jessica Bolinsson | Kimberley A. Dick
[1] L. Samuelson,et al. Structural investigations of core-shell nanowires using grazing incidence X-ray diffraction. , 2009, Nano letters.
[2] R. Buczko,et al. Modelling the structure of GaAs and InAs nanowires , 2008 .
[3] C. Chang-Hasnain,et al. Growth mechanisms and crystallographic structure of InP nanowires on lattice-mismatched substrates , 2008 .
[4] Bas Ketelaars,et al. Synergetic nanowire growth. , 2007, Nature nanotechnology.
[5] Chennupati Jagadish,et al. Unexpected benefits of rapid growth rate for III-V nanowires. , 2009, Nano letters.
[6] L.-E. Wernersson,et al. Vertical Enhancement-Mode InAs Nanowire Field-Effect Transistor With 50-nm Wrap Gate , 2008, IEEE Electron Device Letters.
[7] G. P. Srivastava,et al. Electronic structure of twinning superlattices , 1994 .
[8] Gilles Patriarche,et al. Why does wurtzite form in nanowires of III-V zinc blende semiconductors? , 2007, Physical review letters.
[9] K. Dick,et al. Effects of Supersaturation on the Crystal Structure of Gold Seeded III−V Nanowires , 2009 .
[10] Elias Vlieg,et al. Twinning superlattices in indium phosphide nanowires , 2008, Nature.
[11] Srivastava,et al. Electronic properties of twin boundaries and twinning superlattices in diamond-type and zinc-blende-type semiconductors. , 1993, Physical review. B, Condensed matter.
[12] M. Aagesen,et al. Facet structure of GaAs nanowires grown by molecular beam epitaxy , 2007 .
[13] Chennupati Jagadish,et al. Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures. , 2009, Nano letters.
[14] A. F. Moses,et al. Growth and characterization of wurtzite GaAs nanowires with defect-free zinc blende GaAsSb inserts. , 2008, Nano letters.
[15] K. Dick,et al. Controlled polytypic and twin-plane superlattices in iii-v nanowires. , 2009, Nature nanotechnology.
[16] M. Koguchi,et al. Crystal Structure Change of GaAs and InAs Whiskers from Zinc-Blende to Wurtzite Type , 1992 .
[17] K. Dick,et al. Precursor evaluation for in situ InP nanowire doping , 2008, Nanotechnology.
[18] H. Tan,et al. Growth mechanism of truncated triangular III-V nanowires. , 2007, Small.
[19] Q. Ye,et al. One-dimensional electron transport and thermopower in an individual InSb nanowire , 2006 .
[20] V. Dubrovskii,et al. Growth kinetics and crystal structure of semiconductor nanowires , 2008 .
[21] L. Samuelson,et al. Structural properties of 〈111〉B -oriented III–V nanowires , 2006, Nature materials.
[22] F. Bechstedt,et al. Surface influence on stability and structure of hexagon-shaped III-V semiconductor nanorods , 2007 .
[23] Philippe Caroff,et al. High-quality InAs/InSb nanowire heterostructures grown by metal-organic vapor-phase epitaxy. , 2008, Small.
[24] L. M. Smith,et al. Room temperature photocurrent spectroscopy of single zincblende and wurtzite InP nanowires , 2009 .
[25] Christensen,et al. Bonding and ionicity in semiconductors. , 1987, Physical review. B, Condensed matter.
[26] B. Jacobs,et al. Internal structure of multiphase zinc-blende wurtzite gallium nitride nanowires , 2008, Nanotechnology.
[27] H. Shtrikman,et al. Method for suppression of stacking faults in Wurtzite III-V nanowires. , 2009, Nano letters.
[28] R. LaPierre,et al. Control of GaAs nanowire morphology and crystal structure , 2008, Nanotechnology.
[29] Chennupati Jagadish,et al. Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. , 2007, Nano letters.
[30] E. Lundgren,et al. Direct observation of atomic scale surface relaxation in ortho twin structures in GaAs by XSTM , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[31] Chennupati Jagadish,et al. High Purity GaAs Nanowires Free of Planar Defects: Growth and Characterization , 2008 .
[32] A. Qteish,et al. Ionicity scale based on the centers of maximally localized Wannier functions , 2007 .
[33] S. T. Lee,et al. Small-Diameter Silicon Nanowire Surfaces , 2003, Science.
[34] V. Dubrovskii,et al. Growth thermodynamics of nanowires and its application to polytypism of zinc blende III-V nanowires , 2008 .
[35] R. LaPierre,et al. Onset of stacking faults in InP nanowires grown by gas source molecular beam epitaxy , 2007 .
[36] V. Nebol'sin,et al. A mechanism of quasi-one-dimensional vapor phase growth of Si and GaP whiskers , 2008 .
[37] S. Ciraci,et al. First-principles study of GaAs nanowires , 2009, 0901.3425.
[38] K. Dick,et al. Preferential Interface Nucleation: An Expansion of the VLS Growth Mechanism for Nanowires , 2009 .
[39] Federico Capasso,et al. Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation , 2008 .
[40] Theoretical investigations on the formation of wurtzite segments in group III–V semiconductor nanowires , 2008 .
[41] Jonas Johansson,et al. Growth related aspects of epitaxial nanowires , 2006 .
[42] Federico Capasso,et al. Optical properties of rotationally twinned InP nanowire heterostructures. , 2008, Nano letters.
[43] T. Ito,et al. An Empirical Potential Approach to Wurtzite–Zinc-Blende Polytypism in Group III–V Semiconductor Nanowires , 2006 .
[44] L. Wernersson,et al. GaAs/GaSb nanowire heterostructures grown by MOVPE , 2008 .
[45] Hamann,et al. Ballistic electron transmission through interfaces. , 1988, Physical review. B, Condensed matter.
[46] P. Eklund,et al. Coherent twinning phenomena: towards twinning superlattices in III-V semiconducting nanowires. , 2006, Nano letters.
[47] Lars Samuelson,et al. Solid-phase diffusion mechanism for GaAs nanowire growth , 2004, Microscopy and Microanalysis.
[48] R. Banerjee,et al. Structure of twins in GaAs nanowires grown by the vapour–liquid–solid process , 2006 .
[49] K. Dick,et al. Understanding the 3D structure of \mathrm {GaAs\langle 111\rangle B} nanowires , 2007 .
[50] L. Samuelson,et al. Growth and characterization of defect free GaAs nanowires , 2006 .
[51] L. Largeau,et al. Wurtzite to zinc blende phase transition in GaAs nanowires induced by epitaxial burying. , 2008, Nano letters.
[52] R. LaPierre,et al. A growth interruption technique for stacking fault-free nanowire superlattices , 2009, Nanotechnology.
[53] Lars Samuelson,et al. Strain mapping in free-standing heterostructured wurtzite InAs/InP nanowires , 2007 .
[54] T. Mallouk,et al. Effect of twinning on the photoluminescence and photoelectrochemical properties of indium phosphide nanowires grown on silicon (111). , 2008, Nano letters (Print).
[55] Arden L. Moore,et al. Phonon backscattering and thermal conductivity suppression in sawtooth nanowires , 2008 .
[56] L. Samuelson,et al. Measurements of the band gap of wurtzite InAs1−xPx nanowires using photocurrent spectroscopy , 2007 .
[57] H. Jackson,et al. The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires , 2009, Nanotechnology.
[58] L. Samuelson,et al. Phase segregation in AlInP shells on GaAs nanowires. , 2006, Nano letters.
[59] Lars Samuelson,et al. Defect-free InP nanowires grown in [001] direction on InP (001) , 2004 .
[60] O. M. Gorbenko,et al. Atomic structure of MBE-grown GaAs nanowhiskers , 2005 .
[61] L. Samuelson,et al. Size-selected gold nanoparticles by aerosol technology , 1999 .