Existence of Transonic Solutions in the Stellar Wind Problem with Viscosity and Heat Conduction
暂无分享,去创建一个
[1] J. Richardson,et al. Voyager 2 plasma observations of the heliopause and interstellar medium , 2019, Nature Astronomy.
[2] K. Jockers. On the stability of the solar wind , 1968 .
[3] Kevin Zumbrun,et al. Pointwise semigroup methods and stability of viscous shock waves Indiana Univ , 1998 .
[4] W. Shen. Ratio of specific heats in the solar‐wind plasma flow through the Earth's bow shock , 1971 .
[5] Y. Lou. Three‐dimensional steady compressible perturbations in the magnetohydrodynamic solar wind , 1993 .
[6] Cheng-Hsiung Hsu,et al. Viscous Standing Asymptotic States of Isentropic Compressible Flows Through a Nozzle , 2010 .
[7] E. Dahlberg. ON THE STELLAR-WIND EQUATIONS , 1964 .
[8] John M. Hong,et al. Existence and uniqueness of generalized stationary waves for viscous gas flow through a nozzle with discontinuous cross section , 2012 .
[9] Edgar Knobloch,et al. Transonic canards and stellar wind , 2017 .
[10] E. Dahlberg. Viscous model of solar wind flow , 1970 .
[11] E. Parker. Dynamics of the Interplanetary Gas and Magnetic Fields , 1958 .
[12] M. Wechselberger. À propos de canards (Apropos canards) , 2012 .
[13] J. Richardson,et al. Heliosheath Properties Measured from a Voyager 2 to Voyager 1 Transient , 2019, The Astrophysical Journal.
[14] J. King,et al. DYNAMICAL STABILITY AND BOUNDARY PERTURBATIONS OF THE SOLAR WIND , 1966 .
[15] W. Axford,et al. TERMINATION OF SOLAR WIND AND SOLAR MAGNETIC FIELD , 1963 .
[16] W. Axford,et al. The Theory of Stellar Winds and Related Flows , 1970 .
[17] Martin Wechselberger,et al. Transonic Evaporation Waves in a Spherically Symmetric Nozzle , 2014, SIAM J. Math. Anal..
[18] S. Poedts,et al. A polytropic model for the solar wind , 2011 .
[19] T. Holzer. Interaction Between the Solar Wind and the Interstellar Medium , 1976 .
[20] J. Richardson,et al. Plasma temperature distributions in the heliosheath , 2008 .
[21] Chien-Chang Yen,et al. Characterization of the Transonic Stationary Solutions of the Hydrodynamic Escape Problem , 2014, SIAM J. Appl. Math..
[22] S. Chapman. The Viscosity and Thermal Conductivity of a Completely Ionized Gas. , 1954 .
[23] F. Scarf,et al. CONDUCTIVE HEATING OF THE SOLAR WIND. PART I , 1963 .
[24] Weishi Liu,et al. Linear stability of the sub-to-super inviscid transonic stationary wave for gas flow in a nozzle of varying area , 2013 .
[25] R. E. Marshak,et al. Interplanetary Dynamical Processes , 1963 .
[26] Y. Whang,et al. A viscous model of the solar wind. , 1966 .
[27] T. Holzer,et al. Viscosity in the solar wind , 1986 .
[28] P. Szmolyan,et al. Canards in R3 , 2001 .
[29] Cheng-Hsiung Hsu,et al. Inviscid and viscous stationary waves of gas flow through contracting–expanding nozzles , 2010 .
[30] D. Proga,et al. Parker Winds Revisited: An Extension to Disk Winds , 2012, 1201.0865.
[31] F. Scarf,et al. Conductive heating of the solar wind, ii- the inner corona , 1965 .
[32] Christopher K. R. T. Jones,et al. Tracking invariant manifolds up to exponentially small errors , 1996 .
[33] Christopher T. Russell,et al. The solar wind interaction with the Earth's magnetosphere: a tutorial , 2000 .
[34] J. Richardson,et al. Voyager observations of the interaction of the heliosphere with the interstellar medium , 2012, Journal of advanced research.
[35] Martin A. Lee. The termination shock of the solar wind , 1996 .
[36] Kevin Zumbrun,et al. Multidimensional Stability of Large-Amplitude Navier–Stokes Shocks , 2016, 1603.03955.
[37] Cris R. Hasan,et al. Saddle Slow Manifolds and Canard Orbits in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{4}$\end{document , 2018, Journal of mathematical neuroscience.