Existence of Transonic Solutions in the Stellar Wind Problem with Viscosity and Heat Conduction

The one-fluid stellar wind problem for steady, radial outflow is considered, including effects of heat conduction and viscosity. The associated nondimensionalized equations of conservation of mass, momentum, and energy are singularly perturbed in the large Reynolds number limit, and stellar wind profiles are constructed rigorously in this regime using geometric singular perturbation techniques. Transonic solutions, which accelerate from subsonic to supersonic speeds, are identified as folded saddle canard trajectories lying in the intersection of a subsonic saddle slow manifold and a supersonic repelling slow manifold, returning to subsonic speeds through a viscous layer shock, the location of which is determined by the associated far-field boundary conditions.

[1]  J. Richardson,et al.  Voyager 2 plasma observations of the heliopause and interstellar medium , 2019, Nature Astronomy.

[2]  K. Jockers On the stability of the solar wind , 1968 .

[3]  Kevin Zumbrun,et al.  Pointwise semigroup methods and stability of viscous shock waves Indiana Univ , 1998 .

[4]  W. Shen Ratio of specific heats in the solar‐wind plasma flow through the Earth's bow shock , 1971 .

[5]  Y. Lou Three‐dimensional steady compressible perturbations in the magnetohydrodynamic solar wind , 1993 .

[6]  Cheng-Hsiung Hsu,et al.  Viscous Standing Asymptotic States of Isentropic Compressible Flows Through a Nozzle , 2010 .

[7]  E. Dahlberg ON THE STELLAR-WIND EQUATIONS , 1964 .

[8]  John M. Hong,et al.  Existence and uniqueness of generalized stationary waves for viscous gas flow through a nozzle with discontinuous cross section , 2012 .

[9]  Edgar Knobloch,et al.  Transonic canards and stellar wind , 2017 .

[10]  E. Dahlberg Viscous model of solar wind flow , 1970 .

[11]  E. Parker Dynamics of the Interplanetary Gas and Magnetic Fields , 1958 .

[12]  M. Wechselberger À propos de canards (Apropos canards) , 2012 .

[13]  J. Richardson,et al.  Heliosheath Properties Measured from a Voyager 2 to Voyager 1 Transient , 2019, The Astrophysical Journal.

[14]  J. King,et al.  DYNAMICAL STABILITY AND BOUNDARY PERTURBATIONS OF THE SOLAR WIND , 1966 .

[15]  W. Axford,et al.  TERMINATION OF SOLAR WIND AND SOLAR MAGNETIC FIELD , 1963 .

[16]  W. Axford,et al.  The Theory of Stellar Winds and Related Flows , 1970 .

[17]  Martin Wechselberger,et al.  Transonic Evaporation Waves in a Spherically Symmetric Nozzle , 2014, SIAM J. Math. Anal..

[18]  S. Poedts,et al.  A polytropic model for the solar wind , 2011 .

[19]  T. Holzer Interaction Between the Solar Wind and the Interstellar Medium , 1976 .

[20]  J. Richardson,et al.  Plasma temperature distributions in the heliosheath , 2008 .

[21]  Chien-Chang Yen,et al.  Characterization of the Transonic Stationary Solutions of the Hydrodynamic Escape Problem , 2014, SIAM J. Appl. Math..

[22]  S. Chapman The Viscosity and Thermal Conductivity of a Completely Ionized Gas. , 1954 .

[23]  F. Scarf,et al.  CONDUCTIVE HEATING OF THE SOLAR WIND. PART I , 1963 .

[24]  Weishi Liu,et al.  Linear stability of the sub-to-super inviscid transonic stationary wave for gas flow in a nozzle of varying area , 2013 .

[25]  R. E. Marshak,et al.  Interplanetary Dynamical Processes , 1963 .

[26]  Y. Whang,et al.  A viscous model of the solar wind. , 1966 .

[27]  T. Holzer,et al.  Viscosity in the solar wind , 1986 .

[28]  P. Szmolyan,et al.  Canards in R3 , 2001 .

[29]  Cheng-Hsiung Hsu,et al.  Inviscid and viscous stationary waves of gas flow through contracting–expanding nozzles , 2010 .

[30]  D. Proga,et al.  Parker Winds Revisited: An Extension to Disk Winds , 2012, 1201.0865.

[31]  F. Scarf,et al.  Conductive heating of the solar wind, ii- the inner corona , 1965 .

[32]  Christopher K. R. T. Jones,et al.  Tracking invariant manifolds up to exponentially small errors , 1996 .

[33]  Christopher T. Russell,et al.  The solar wind interaction with the Earth's magnetosphere: a tutorial , 2000 .

[34]  J. Richardson,et al.  Voyager observations of the interaction of the heliosphere with the interstellar medium , 2012, Journal of advanced research.

[35]  Martin A. Lee The termination shock of the solar wind , 1996 .

[36]  Kevin Zumbrun,et al.  Multidimensional Stability of Large-Amplitude Navier–Stokes Shocks , 2016, 1603.03955.

[37]  Cris R. Hasan,et al.  Saddle Slow Manifolds and Canard Orbits in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{4}$\end{document , 2018, Journal of mathematical neuroscience.