Input space versus feature space in kernel-based interval fuzzy C-Means clustering
暂无分享,去创建一个
Renata M. C. R. de Souza | Bruno A. Pimentel | Anderson F. B. F. da Costa | Anderson F. B. F. da Costa | R. Souza
[1] G. W. Milligan,et al. CLUSTERING VALIDATION: RESULTS AND IMPLICATIONS FOR APPLIED ANALYSES , 1996 .
[2] Maoguo Gong,et al. Fuzzy C-Means Clustering With Local Information and Kernel Metric for Image Segmentation , 2013, IEEE Transactions on Image Processing.
[3] Pietro Perona,et al. Self-Tuning Spectral Clustering , 2004, NIPS.
[4] Monique Noirhomme-Fraiture,et al. Symbolic Data Analysis and the SODAS Software , 2008 .
[5] James M. Keller,et al. A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..
[6] Francisco de A. T. de Carvalho,et al. Fuzzy K-means clustering algorithms for interval-valued data based on adaptive quadratic distances , 2010, Fuzzy Sets Syst..
[7] Song-can Chen,et al. Kernel-based fuzzy and possibilistic c-means clustering , 2003 .
[8] Dao-Qiang Zhang,et al. Clustering Incomplete Data Using Kernel-Based Fuzzy C-means Algorithm , 2003, Neural Processing Letters.
[9] Edwin Diday,et al. An introduction to symbolic data analysis and the SODAS software , 2003, Intell. Data Anal..
[10] A. Boudou,et al. Mercury in the food web: accumulation and transfer mechanisms. , 1997, Metal ions in biological systems.
[11] Rui Xu,et al. Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.
[12] David G. Stork,et al. Pattern Classification , 1973 .
[13] Lynne Billard,et al. Symbolic data analysis: what is it? , 2006 .
[14] Renata M. C. R. de Souza,et al. Kernel-based fuzzy clustering of interval data , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).
[15] M. Cugmas,et al. On comparing partitions , 2015 .
[16] Anil K. Jain,et al. Data clustering: a review , 1999, CSUR.
[17] Francesco Masulli,et al. A survey of kernel and spectral methods for clustering , 2008, Pattern Recognit..
[18] P. Nagabhushan,et al. Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns , 2004, Pattern Recognit. Lett..