Input space versus feature space in kernel-based interval fuzzy C-Means clustering

The main property of kernel methods is that they can implicitly perform a nonlinear mapping of the input data into a high-dimensional space. This mapping allows to find a simpler structure within space without increasing the number of parameters increasing the clustering quality. Therefore, kernel methods may find better results for data arranged not linearly. Many methods presented in the literature only use point data. However, real problems need more complex representation. In this work, we propose a new kernel-based fuzzy method using feature space metric for interval-valued data. Moreover, a comparative study between input space and feature space is set up in this paper. In order to evaluate the performance of the proposed method, experiments with synthetic and real interval data set were carried out.

[1]  G. W. Milligan,et al.  CLUSTERING VALIDATION: RESULTS AND IMPLICATIONS FOR APPLIED ANALYSES , 1996 .

[2]  Maoguo Gong,et al.  Fuzzy C-Means Clustering With Local Information and Kernel Metric for Image Segmentation , 2013, IEEE Transactions on Image Processing.

[3]  Pietro Perona,et al.  Self-Tuning Spectral Clustering , 2004, NIPS.

[4]  Monique Noirhomme-Fraiture,et al.  Symbolic Data Analysis and the SODAS Software , 2008 .

[5]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[6]  Francisco de A. T. de Carvalho,et al.  Fuzzy K-means clustering algorithms for interval-valued data based on adaptive quadratic distances , 2010, Fuzzy Sets Syst..

[7]  Song-can Chen,et al.  Kernel-based fuzzy and possibilistic c-means clustering , 2003 .

[8]  Dao-Qiang Zhang,et al.  Clustering Incomplete Data Using Kernel-Based Fuzzy C-means Algorithm , 2003, Neural Processing Letters.

[9]  Edwin Diday,et al.  An introduction to symbolic data analysis and the SODAS software , 2003, Intell. Data Anal..

[10]  A. Boudou,et al.  Mercury in the food web: accumulation and transfer mechanisms. , 1997, Metal ions in biological systems.

[11]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[12]  David G. Stork,et al.  Pattern Classification , 1973 .

[13]  Lynne Billard,et al.  Symbolic data analysis: what is it? , 2006 .

[14]  Renata M. C. R. de Souza,et al.  Kernel-based fuzzy clustering of interval data , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[15]  M. Cugmas,et al.  On comparing partitions , 2015 .

[16]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[17]  Francesco Masulli,et al.  A survey of kernel and spectral methods for clustering , 2008, Pattern Recognit..

[18]  P. Nagabhushan,et al.  Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns , 2004, Pattern Recognit. Lett..