Continuous Constrained Optimization with Dynamic Tolerance Using the COPSO Algorithm

This work introduces a hybrid PSO algorithm which includes perturbation operators to keep population diversity. A new neighborhood structure for Particle Swarm Optimization called Singly-Linked Ring is implemented. The approach proposes a neighborhood similar to the ring structure, but which has an innovative neighbors selection. The objective is to avoid the premature convergence into local optimum. A special technique to handle equality constraints with low side effects on the diversity is the main feature of this contribution. Two perturbation operators are used to improve the exploration, applying the modification only in the particle best population.We show through a number of experiments how, by keeping the selection pressure on a decreasing fraction of the population, COPSO can consistently solve a benchmark of constrained optimization problems.

[1]  Peter J. Angeline,et al.  Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences , 1998, Evolutionary Programming.

[2]  R. W. Dobbins,et al.  Computational intelligence PC tools , 1996 .

[3]  Angel Eduardo Muñoz Zavala,et al.  Constrained optimization via particle evolutionary swarm optimization algorithm (PESO) , 2005, GECCO '05.

[4]  Terence Soule,et al.  Breeding swarms: a GA/PSO hybrid , 2005, GECCO '05.

[5]  Rainer Storn,et al.  System design by constraint adaptation and differential evolution , 1999, IEEE Trans. Evol. Comput..

[6]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[7]  A. E. Eiben,et al.  Evolutionary Programming VII , 1998, Lecture Notes in Computer Science.

[8]  Carlos A. Coello Coello,et al.  PASSSS: an implementation of a novel diversity strategy for handling constraints , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[9]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[10]  Tughrul Arslan,et al.  Proceedings Of The 2000 Congress On Evolutionary Computation , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[11]  Haiyan Lu,et al.  Dynamic-objective particle swarm optimization for constrained optimization problems , 2006, J. Comb. Optim..

[12]  Amit Konar,et al.  Improving particle swarm optimization with differentially perturbed velocity , 2005, GECCO '05.

[13]  Carlos A. Coello Coello,et al.  Handling constraints using multiobjective optimization concepts , 2004 .

[14]  Xin Yao,et al.  Search biases in constrained evolutionary optimization , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[15]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[16]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[17]  Jing J. Liang,et al.  Problem Deflnitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-Parameter Optimization , 2006 .

[18]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[19]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[20]  T. Krink,et al.  Particle swarm optimisation with spatial particle extension , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[21]  Russell C. Eberhart,et al.  The particle swarm: social adaptation in information-processing systems , 1999 .

[22]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[23]  Carlos A. Coello Coello,et al.  A Particle Swarm Optimizer for Constrained Numerical Optimization , 2006, PPSN.

[24]  Russell C. Eberhart,et al.  Solving Constrained Nonlinear Optimization Problems with Particle Swarm Optimization , 2002 .

[25]  S. Halgamuge,et al.  A comparison of constraint-handling methods for the application of particle swarm optimization to constrained nonlinear optimization problems , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[26]  James Kennedy,et al.  Bare bones particle swarms , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[27]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[28]  Thomas Kiel Rasmussen,et al.  Hybrid Particle Swarm Optimiser with breeding and subpopulations , 2001 .

[29]  Xiao-Feng Xie,et al.  DEPSO: hybrid particle swarm with differential evolution operator , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[30]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[31]  Carlos A. Coello Coello,et al.  A constraint-handling mechanism for particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[32]  Shang He,et al.  An improved particle swarm optimizer for mechanical design optimization problems , 2004 .

[33]  Michael N. Vrahatis,et al.  Unified Particle Swarm Optimization for Solving Constrained Engineering Optimization Problems , 2005, ICNC.

[34]  Gerry Dozier,et al.  Adapting Particle Swarm Optimizationto Dynamic Environments , 2001 .

[35]  Sana Ben Hamida,et al.  The need for improving the exploration operators for constrained optimization problems , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[36]  Xiaohui Hu,et al.  Engineering optimization with particle swarm , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[37]  Xiao-Feng Xie,et al.  Handling boundary constraints for numerical optimization by particle swarm flying in periodic search space , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[38]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[39]  Yew-Soon Ong,et al.  Advances in Natural Computation, First International Conference, ICNC 2005, Changsha, China, August 27-29, 2005, Proceedings, Part I , 2005, ICNC.

[40]  Carlos A. Coello Coello,et al.  Identifying on-line behavior and some sources of difficulty in two competitive approaches for constrained optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[41]  Russell C. Eberhart,et al.  Comparison between Genetic Algorithms and Particle Swarm Optimization , 1998, Evolutionary Programming.

[42]  David B. Fogel,et al.  An introduction to simulated evolutionary optimization , 1994, IEEE Trans. Neural Networks.

[43]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[44]  T. Blackwell,et al.  Particle swarms and population diversity , 2005, Soft Comput..