Similar Microbial Communities Found on Two Distant Seafloor Basalts

The oceanic crust forms two thirds of the Earth’s surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present the first comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lō’ihi Seamount, Hawai’i, and the East Pacific Rise (EPR; 9°N). Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from Lō’ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy.

[1]  P. Girguis,et al.  Carbon fixation by basalt-hosted microbial communities , 2015, Front. Microbiol..

[2]  B. Orcutt,et al.  New Insight into Microbial Iron Oxidation as Revealed by the Proteomic Profile of an Obligate Iron-Oxidizing Chemolithoautotroph , 2015, Applied and Environmental Microbiology.

[3]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[4]  Katrina J. Edwards,et al.  Extracellular Enzyme Activity and Microbial Diversity Measured on Seafloor Exposed Basalts from Loihi Seamount Indicate the Importance of Basalts to Global Biogeochemical Cycling , 2014, Applied and Environmental Microbiology.

[5]  Holly M. Bik,et al.  PhyloSift: phylogenetic analysis of genomes and metagenomes , 2014, PeerJ.

[6]  Marcel Huntemann,et al.  The prepared sample libraries were quantified by qPCR using KAPA Biosystem ’ s next-generation sequencing library qPCR kit and run on a Roche LightCycler , 2014 .

[7]  Taishi Tsubouchi,et al.  Molecular biological and isotopic biogeochemical prognoses of the nitrification-driven dynamic microbial nitrogen cycle in hadopelagic sediments. , 2013, Environmental microbiology.

[8]  R. Villemur,et al.  Methylophaga nitratireducenticrescens sp. nov. and Methylophaga frappieri sp. nov., isolated from the biofilm of the methanol-fed denitrification system treating the seawater at the Montreal Biodome. , 2013, International journal of systematic and evolutionary microbiology.

[9]  J. Alt Subseafloor Processes in Mid‐Ocean Ridge Hydrothennal Systems , 2013 .

[10]  A. Oschlies,et al.  Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone , 2013 .

[11]  Ryan A. Lesniewski,et al.  Mineralogy Drives Bacterial Biogeography of Hydrothermally Inactive Seafloor Sulfide Deposits , 2013 .

[12]  Daniel H Huson,et al.  Microbial community analysis using MEGAN. , 2013, Methods in enzymology.

[13]  David A. Pearce,et al.  Metagenomic Analysis of a Southern Maritime Antarctic Soil , 2012, Front. Microbio..

[14]  K. Rosso,et al.  Mtr extracellular electron-transfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: a genomic perspective. , 2012, Biochemical Society transactions.

[15]  M. Könneke,et al.  Mimicking the oxygen minimum zones: stimulating interaction of aerobic archaeal and anaerobic bacterial ammonia oxidizers in a laboratory-scale model system , 2012, Environmental microbiology.

[16]  R. Hatzenpichler Diversity, Physiology, and Niche Differentiation of Ammonia-Oxidizing Archaea , 2012, Applied and Environmental Microbiology.

[17]  Jason M. Smith,et al.  Diversity, abundance and expression of nitrite reductase (nirK)-like genes in marine thaumarchaea , 2012, The ISME Journal.

[18]  Elmar Pruesse,et al.  SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes , 2012, Bioinform..

[19]  Tatiana A. Tatusova,et al.  NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy , 2011, Nucleic Acids Res..

[20]  David A. C. Beck,et al.  Novel methylotrophic isolates from lake sediment, description of Methylotenera versatilis sp. nov. and emended description of the genus Methylotenera. , 2012, International journal of systematic and evolutionary microbiology.

[21]  J. G. Kuenen,et al.  Mariprofundus ferrooxydans PV-1 the First Genome of a Marine Fe(II) Oxidizing Zetaproteobacterium , 2011, PloS one.

[22]  B. Tebo,et al.  Biodiversity and Emerging Biogeography of the Neutrophilic Iron-Oxidizing Zetaproteobacteria , 2011, Applied and Environmental Microbiology.

[23]  J. White,et al.  Metagenomics of the subsurface Brazos-Trinity Basin (IODP site 1320): comparison with other sediment and pyrosequenced metagenomes , 2011, The ISME Journal.

[24]  R. Wirth,et al.  Methanocaldococcus villosus sp. nov., a heavily flagellated archaeon that adheres to surfaces and forms cell-cell contacts. , 2011, International journal of systematic and evolutionary microbiology.

[25]  Andreas Richter,et al.  Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil , 2011, Proceedings of the National Academy of Sciences.

[26]  R. Edwards,et al.  Fast Identification and Removal of Sequence Contamination from Genomic and Metagenomic Datasets , 2011, PloS one.

[27]  Robert A. Edwards,et al.  Quality control and preprocessing of metagenomic datasets , 2011, Bioinform..

[28]  P. Hugenholtz,et al.  Multiple displacement amplification compromises quantitative analysis of metagenomes , 2010, Nature Methods.

[29]  D. Emerson Potential for Iron-reduction and Iron-cycling in Iron Oxyhydroxide-rich Microbial Mats at Loihi Seamount , 2009 .

[30]  Alice Dohnalkova,et al.  A seafloor microbial biome hosted within incipient ferromanganese crusts , 2009 .

[31]  Jizhong Zhou,et al.  Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts , 2008, The ISME Journal.

[32]  K. Edwards,et al.  The diversity and abundance of bacteria inhabiting seafloor lavas positively correlate with rock alteration. , 2009, Environmental microbiology.

[33]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[34]  J. Cort,et al.  Allochromatium vinosum DsrC: solution-state NMR structure, redox properties, and interaction with DsrEFH, a protein essential for purple sulfur bacterial sulfur oxidation. , 2008, Journal of molecular biology.

[35]  Andreas Wilke,et al.  phylogenetic and functional analysis of metagenomes , 2022 .

[36]  K. Edwards,et al.  Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9–10°N , 2008 .

[37]  M. Sogin,et al.  Abundance and diversity of microbial life in ocean crust , 2008, Nature.

[38]  I. Thorseth,et al.  Enumeration of Archaea and Bacteria in seafloor basalt using real-time quantitative PCR and fluorescence microscopy. , 2008, FEMS microbiology letters.

[39]  I-Min A. Chen,et al.  IMG/M: a data management and analysis system for metagenomes , 2007, Nucleic Acids Res..

[40]  S. Giovannoni,et al.  The phylogeny of endolithic microbes associated with marine basalts. , 2007, Environmental microbiology.

[41]  S. Kim,et al.  Methylophaga aminisulfidivorans sp. nov., a restricted facultatively methylotrophic marine bacterium. , 2007, International journal of systematic and evolutionary microbiology.

[42]  Peter F. Hallin,et al.  RNAmmer: consistent and rapid annotation of ribosomal RNA genes , 2007, Nucleic acids research.

[43]  J A Eisen,et al.  The Calyptogena magnifica Chemoautotrophic Symbiont Genome , 2007, Science.

[44]  Inna Dubchak,et al.  The integrated microbial genomes (IMG) system , 2005, Nucleic Acids Res..

[45]  J. Baross,et al.  Incidence of novel and potentially archaeal nitrogenase genes in the deep Northeast Pacific Ocean. , 2005, Environmental microbiology.

[46]  B. Tebo,et al.  Diverse Mn(II)-Oxidizing Bacteria Isolated from Submarine Basalts at Loihi Seamount , 2005 .

[47]  L. Øvreås,et al.  Microbial community diversity in seafloor basalt from the Arctic spreading ridges. , 2004, FEMS microbiology ecology.

[48]  H. König,et al.  Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen , 1982, Archives of Microbiology.

[49]  Katrina J. Edwards,et al.  Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production , 2003 .

[50]  K. Edwards,et al.  Isolation and Characterization of Novel Psychrophilic, Neutrophilic, Fe-Oxidizing, Chemolithoautotrophic α- and γ-Proteobacteria from the Deep Sea , 2003, Applied and Environmental Microbiology.

[51]  K. Edwards,et al.  Geomicrobiology of the Ocean Crust: A Role for Chemoautotrophic Fe-Bacteria , 2003, The Biological Bulletin.

[52]  J. Baross,et al.  Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. , 2003, FEMS microbiology ecology.

[53]  Fabien Kenig,et al.  Fluids from Aging Ocean Crust That Support Microbial Life , 2003, Science.

[54]  D. White Microbial community analysis. , 2002, Environmental microbiology.

[55]  Rolf B. Pedersen,et al.  Diversity of life in ocean floor basalt , 2001 .

[56]  A. Fisher,et al.  Channelized fluid flow in oceanic crust reconciles heat-flow and permeability data , 2000, Nature.

[57]  J. Hormes,et al.  In situ analysis of sulfur in the sulfur globules of phototrophic sulfur bacteria by X-ray absorption near edge spectroscopy. , 1999, Biochimica et biophysica acta.

[58]  E. Corre,et al.  Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213T as Methanococcus fervens sp. nov. , 1999, International journal of systematic bacteriology.

[59]  Thomas Wetter,et al.  Genome Sequence Assembly Using Trace Signals and Additional Sequence Information , 1999, German Conference on Bioinformatics.

[60]  D. Prieur,et al.  Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophic methanogen isolated from a deep-sea hydrothermal vent. , 1998, International journal of systematic bacteriology.

[61]  Michael Wagner,et al.  Phylogeny of Dissimilatory Sulfite Reductases Supports an Early Origin of Sulfate Respiration , 1998, Journal of bacteriology.

[62]  A. Fisher Permeability within basaltic oceanic crust , 1998 .

[63]  Susan E. Humphris,et al.  Seafloor hydrothermal systems : physical, chemical, biological, and geological interactions , 1995 .

[64]  Michael Taylor Diversity of life , 1994, Nature.

[65]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[66]  R S Wolfe,et al.  Nutrition and carbon metabolism of Methanococcus voltae , 1982, Journal of bacteriology.

[67]  H. S. Yoder Generation of basaltic magma , 1976 .

[68]  R. Berner Iron Sulfides Formed from Aqueous Solution at Low Temperatures and Atmospheric Pressure , 1964, The Journal of Geology.