Organelle Contact Sites: Lipid Droplets Hooked by Metabolically Controlled Tethers

[1]  D. Nicastro,et al.  Mdm1 maintains endoplasmic reticulum homeostasis by spatially regulating lipid droplet biogenesis , 2019, The Journal of cell biology.

[2]  H. Hariri,et al.  Cerebellar ataxia disease–associated Snx14 promotes lipid droplet growth at ER–droplet contacts , 2019, The Journal of cell biology.

[3]  M. Bitner-Glindzicz,et al.  SNX14 mutations affect endoplasmic reticulum-associated neutral lipid metabolism in autosomal recessive spinocerebellar ataxia 20 , 2018, Human molecular genetics.

[4]  Robert V Farese,et al.  Mechanism and Determinants of Amphipathic Helix-Containing Protein Targeting to Lipid Droplets. , 2018, Developmental cell.

[5]  Christer S. Ejsing,et al.  Regulation of lipid droplets by metabolically controlled Ldo isoforms , 2018, The Journal of cell biology.

[6]  M. Schuldiner,et al.  Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation , 2018, The Journal of cell biology.

[7]  H. Hariri,et al.  Lipid droplet biogenesis is spatially coordinated at ER–vacuole contacts under nutritional stress , 2018, EMBO reports.

[8]  M. Welte,et al.  Lipid droplet functions beyond energy storage. , 2017, Biochimica et biophysica acta. Molecular and cell biology of lipids.

[9]  J. Goodman,et al.  The collaborative work of droplet assembly. , 2017, Biochimica et biophysica acta. Molecular and cell biology of lipids.

[10]  M. Schuldiner,et al.  A different kind of love - lipid droplet contact sites. , 2017, Biochimica et biophysica acta. Molecular and cell biology of lipids.

[11]  Adam C. Miller,et al.  Asymmetry of an Intracellular Scaffold at Vertebrate Electrical Synapses , 2017, Current Biology.

[12]  Robert V Farese,et al.  Lipid Droplet Biogenesis. , 2017, Annual review of cell and developmental biology.

[13]  E. Macagno,et al.  Electrical transmission: Two structures, same functions? , 2017, Developmental neurobiology.

[14]  S. Siniossoglou,et al.  Function of lipid droplet-organelle interactions in lipid homeostasis. , 2017, Biochimica et biophysica acta. Molecular cell research.

[15]  K. Girisha,et al.  Autosomal recessive spinocerebellar ataxia 20: Report of a new patient and review of literature. , 2017, European journal of medical genetics.

[16]  M. Schuldiner,et al.  A Tether Is a Tether Is a Tether: Tethering at Membrane Contact Sites. , 2016, Developmental cell.

[17]  G. Carman,et al.  Lipid partitioning at the nuclear envelope controls membrane biogenesis , 2015, Molecular biology of the cell.

[18]  S. Emr,et al.  Mdm1/Snx13 is a novel ER–endolysosomal interorganelle tethering protein , 2015, The Journal of cell biology.

[19]  Cecilia B. Moens,et al.  Neurobeachin Is Required Postsynaptically for Electrical and Chemical Synapse Formation , 2015, Current Biology.

[20]  M. Bitner-Glindzicz,et al.  Mutations in SNX14 cause a distinctive autosomal-recessive cerebellar ataxia and intellectual disability syndrome. , 2014, American journal of human genetics.

[21]  R. Teasdale,et al.  Structural Basis for Different Phosphoinositide Specificities of the PX Domains of Sorting Nexins Regulating G-protein Signaling* , 2014, The Journal of Biological Chemistry.

[22]  B. Kornmann,et al.  Organization and function of membrane contact sites. , 2013, Biochimica et biophysica acta.

[23]  Alberto E. Pereda,et al.  Molecular and Functional Asymmetry at a Vertebrate Electrical Synapse , 2013, Neuron.

[24]  S. Mills,et al.  Cone Photoreceptors in Bass Retina Use Two Connexins to Mediate Electrical Coupling , 2004, The Journal of Neuroscience.

[25]  D. Goldfarb,et al.  Nucleus-vacuole junctions in Saccharomyces cerevisiae are formed through the direct interaction of Vac8p with Nvj1p. , 2000, Molecular biology of the cell.

[26]  R. Bruzzone,et al.  Cloning and Expression of Two Related Connexins from the Perch Retina Define a Distinct Subgroup of the Connexin Family , 1998, The Journal of Neuroscience.