Classifying non-small cell lung carcinoma in histological images using a convolutional neural network

UNIVERSITY OF TAMPERE Master’s Degree Programme in Bioinformatics TIMONEN, VEERA: Classifying non-small cell lung carcinoma in histological images using a convolutional neural network Master of Science Thesis, 46 pages

[1]  Christopher Joseph Pal,et al.  The Importance of Skip Connections in Biomedical Image Segmentation , 2016, LABELS/DLMIA@MICCAI.

[2]  H. Robbins A Stochastic Approximation Method , 1951 .

[3]  Antonio Criminisi Machine learning for medical images analysis , 2016, Medical Image Anal..

[4]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[5]  Claudio Moraga,et al.  The Influence of the Sigmoid Function Parameters on the Speed of Backpropagation Learning , 1995, IWANN.

[6]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[7]  Pavlo M. Radiuk,et al.  Impact of Training Set Batch Size on the Performance of Convolutional Neural Networks for Diverse Datasets , 2017, Information Technology and Management Science.

[8]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[9]  Gaudenz Danuser,et al.  Computer Vision in Cell Biology , 2011, Cell.

[10]  P. Jaccard Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines , 1901 .

[11]  Kilian Q. Weinberger,et al.  Deep Networks with Stochastic Depth , 2016, ECCV.

[12]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[13]  L. Landi,et al.  Programmed death ligand 1 expression in early stage, resectable non-small cell lung cancer , 2019, Oncotarget.

[14]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[15]  Andrew Janowczyk,et al.  A deep-learning classifier identifies patients with clinical heart failure using whole-slide images of H&E tissue , 2018, PloS one.

[16]  Ronald M. Summers,et al.  Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique , 2016 .

[17]  Russ B. Altman,et al.  Classifying Non-Small Cell Lung Cancer Histopathology Types and Transcriptomic Subtypes using Convolutional Neural Networks , 2019, bioRxiv.

[18]  Kaisa Liimatainen,et al.  Iterative unsupervised domain adaptation for generalized cell detection from brightfield z-stacks , 2019, BMC Bioinformatics.

[19]  Anagha P. Jadhav,et al.  A Multi-Institutional Study to Evaluate Automated Whole Slide Scoring of Immunohistochemistry for Assessment of Programmed Death-Ligand 1 (PD-L1) Expression in Non–Small Cell Lung Cancer , 2019, Applied immunohistochemistry & molecular morphology : AIMM.

[20]  Saeed Hassanpour,et al.  Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks , 2019, Scientific Reports.

[21]  Vijayan K. Asari,et al.  The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches , 2018, ArXiv.

[22]  Jorma Isola,et al.  Cytokeratin-Supervised Deep Learning for Automatic Recognition of Epithelial Cells in Breast Cancers Stained for ER, PR, and Ki-67 , 2020, IEEE Transactions on Medical Imaging.

[23]  Vijayan K. Asari,et al.  Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation , 2018, ArXiv.

[24]  Sebastian Thrun,et al.  Dermatologist-level classification of skin cancer with deep neural networks , 2017, Nature.

[25]  Bram van Ginneken,et al.  A survey on deep learning in medical image analysis , 2017, Medical Image Anal..

[26]  Joel H. Saltz,et al.  Patch-Based Convolutional Neural Network for Whole Slide Tissue Image Classification , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  C. Mu,et al.  High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation , 2011, Medical oncology.

[28]  Richard Socher,et al.  Improving Generalization Performance by Switching from Adam to SGD , 2017, ArXiv.

[29]  Stan Szpakowicz,et al.  Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation , 2006, Australian Conference on Artificial Intelligence.

[30]  Shaimaa Al-Janabi,et al.  Digital pathology: current status and future perspectives , 2012, Histopathology.

[31]  Kaisa Liimatainen,et al.  Dual Structured Convolutional Neural Network with Feature Augmentation for Quantitative Characterization of Tissue Histology , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[32]  Richard Hans Robert Hahnloser,et al.  Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit , 2000, Nature.

[33]  Andrew H. Beck,et al.  Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer , 2017, JAMA.

[34]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[35]  Tomasz Markiewicz,et al.  Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides , 2019, Scientific Reports.

[36]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.