Considerations on solving problems with multiple scales

[1]  G. Majda Filtering Techniques for Systems of Stiff Ordinary Differential Equations I , 1984 .

[2]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[3]  W. Miranker,et al.  An Extrapolation Method for the Numerical Solution of Singular Perturbation Problems , 1983 .

[4]  Robert Krasny,et al.  A Hybrid Asymptotic-Finite Element Method for Stiff Two-Point Boundary Value Problems , 1983 .

[5]  Ami Harten,et al.  Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .

[6]  J. A. White,et al.  On the Numerical Solution of Initial/Boundary-Value Problems in One Space Dimension , 1982 .

[7]  J. Brackbill,et al.  Adaptive zoning for singular problems in two dimensions , 1982 .

[8]  J. Flaherty,et al.  An Adaptive Finite Element Method for Initial-Boundary Value Problems for Partial Differential Equations , 1982 .

[9]  L. Felsen,et al.  Hybrid ray-mode formulation of SH motion in a two-layer half-space , 1981 .

[10]  Keith Miller,et al.  Moving Finite Elements. I , 1981 .

[11]  O. Axelsson,et al.  Stability and Error Estimates of Galerkin Finite Element Approximations for Convection—Diffusion Equations , 1981 .

[12]  L. Trefethen Group velocity in finite difference schemes , 1981 .

[13]  H. Kreiss,et al.  Numerical Methods for Singular Perturbation Problems , 1981 .

[14]  Jaroslav Kautsky,et al.  Equidistributing Meshes with Constraints , 1980 .

[15]  G. Hedstrom,et al.  The effect of cell reynolds number on the computation of a boundary layer , 1980 .

[16]  Alan E. Berger,et al.  Generalized OCI schemes for boundary layer problems , 1980 .

[17]  Joseph E. Flaherty,et al.  Collocation with Polynomial and Tension Splines for Singularly-Perturbed Boundary Value Problems , 1980 .

[18]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[19]  B. McNamara Super‐convergent adiabatic invariants with resonant denominators by Lie transforms , 1978 .

[20]  R. C. Y. Chin,et al.  A Dispersion Analysis for Difference Schemes: Tables of Generalized Airy Functions* , 1978 .

[21]  R. Russell,et al.  Adaptive Mesh Selection Strategies for Solving Boundary Value Problems , 1978 .

[22]  R. Kellogg,et al.  Analysis of some difference approximations for a singular perturbation problem without turning points , 1978 .

[23]  V. Pereyra,et al.  An adaptive finite difference solver for nonlinear two point boundary problems with mild boundary layers. , 1975 .

[24]  R. C. Y. Chin,et al.  Dispersion and Gibbs phenomenon associated with difference approximations to initial boundary-value problems for hyperbolic equations☆ , 1975 .

[25]  H. B. Keller,et al.  Difference approximations for singular perturbations of systems of ordinary differential equations , 1974 .

[26]  Victor Pereyra,et al.  Mesh selection for discrete solution of boundary problems in ordinary differential equations , 1974 .

[27]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[28]  R. F. Warming,et al.  The modified equation approach to the stability and accuracy analysis of finite-difference methods , 1974 .

[29]  S. Pruess Solving linear boundary value problems by approximating the coefficients , 1973 .

[30]  V. Thomée,et al.  Estimates Near Discontinuities for Some Difference Schemes. , 1971 .

[31]  B. Lindberg On smoothing and extrapolation for the trapezoidal rule , 1971 .

[32]  D. Stern Kruskal's Perturbation Method , 1970 .

[33]  A. Kamel Perturbation method in the theory of nonlinear oscillations , 1970 .

[34]  Lawrence M. Perko,et al.  Higher order averaging and related methods for perturbed periodic and quasi-periodic systems , 1969 .

[35]  P. R. Sethna An extension of the method of averaging , 1967 .

[36]  G. Dahlquist A special stability problem for linear multistep methods , 1963 .

[37]  M. Kruskal,et al.  Asymptotic Theory of Hamiltonian and other Systems with all Solutions Nearly Periodic , 1962 .

[38]  C. Chester,et al.  An extension of the method of steepest descents , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[39]  N. Levinson The First Boundary Value Problem for εΔu + A(x, y)u x + B(x, y)u y + C(x, y)u = D(x, y) for Small ε , 1950 .

[40]  R. C. Y. Chin,et al.  Numerical solutions of chemically reacting flows in porous media , 1980 .

[41]  Lawrence F. Shampine,et al.  A User’s View of Solving Stiff Ordinary Differential Equations , 1979 .

[42]  Wing Kam Liu,et al.  Finite Element Analysis of Incompressible Viscous Flows by the Penalty Function Formulation , 1979 .

[43]  L. Petzold An Efficient Numerical Method for Highly Oscillatory Ordinary Differential Equations , 1978 .

[44]  J. Flaherty,et al.  The numerical solution of boundary value problems for stiff differential equations , 1977 .

[45]  O. C. Zienkiewicz,et al.  Quadratic finite element schemes for two-dimensional convective-transport problems , 1977 .

[46]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .