CP violation from finite groups

Author(s): Chen, MC; Fallbacher, M; Mahanthappa, KT; Ratz, M; Trautner, A | Abstract: We discuss the origin of CP violation in settings with a discrete (flavor) symmetry G. We show that physical CP transformations always have to be class-inverting automorphisms of G. This allows us to categorize finite groups into three types: (i) Groups that do not exhibit such an automorphism and, therefore, in generic settings, explicitly violate CP. In settings based on such groups, CP violation can have pure group-theoretic origin and can be related to the complexity of some Clebsch-Gordan coefficients. (ii) Groups for which one can find a CP basis in which all the Clebsch-Gordan coefficients are real. For such groups, imposing CP invariance restricts the phases of coupling coefficients. (iii) Groups that do not admit real Clebsch-Gordan coefficients but possess a class-inverting automorphism that can be used to define a proper (generalized) CP transformation. For such groups, imposing CP invariance can lead to an additional symmetry that forbids certain couplings. We make use of the so-called twisted Frobenius-Schur indicator to distinguish between the three types of discrete groups. With δ(27), T ', and σ(72) we present one explicit example for each type of group, thereby illustrating the CP properties of models based on them. We also show that certain operations that have been dubbed generalized CP transformations in the recent literature do not lead to physical CP conservation. © 2014 The Authors.

[1]  C. Nishi,et al.  Generalized $CP$ symmetries in $\Delta(27)$ flavor models , 2013, 1306.0877.

[2]  L. Biedenharn,et al.  On Quasi-Ambivalent Groups , 1975, Canadian Journal of Mathematics.

[3]  J. Torrado,et al.  Classification of symmetric toroidal orbifolds , 2012, 1209.3906.

[4]  M. A. Schmidt,et al.  Natural vacuum alignment from group theory: the minimal case , 2011, Journal of High Energy Physics.

[5]  Mu-Chun Chen,et al.  Group theoretical origin of CP violation , 2009, 0904.1721.

[6]  T. Damhus,et al.  A necessary and sufficient condition for the existence of real coupling coefficients for a finite group , 1985 .

[7]  M. Sozzi Discrete Symmetries and CP Violation: From Experiment to Theory , 2008 .

[8]  G. Ecker,et al.  A standard form for generalised CP transformations , 1987 .

[9]  Makoto Kobayashi,et al.  CP Violation in the Renormalizable Theory of Weak Interaction , 1973 .

[10]  G. Ecker,et al.  Quark Mass Matrices in Left-right Symmetric Gauge Theories , 1981 .

[11]  R. Gilmore,et al.  Group Theory , 2010 .

[12]  Tatsuo C. Kobayashi,et al.  Stringy origin of non-Abelian discrete flavor symmetries , 2006, hep-ph/0611020.

[13]  G. Branco,et al.  Geometrical T-violation , 1984 .

[14]  M. N. Rebelo,et al.  Majorana Neutrinos and {CP} Violation in the Leptonic Sector , 1986 .

[15]  M. Lindner,et al.  Non-Abelian Discrete Groups from the Breaking of Continuous Flavor Symmetries , 2009, 0907.2332.

[16]  M. Sozzi Discrete Symmetries and CP Violation , 2007 .

[17]  R. Ziegler,et al.  Lepton mixing parameters from discrete and CP symmetries , 2012, 1211.5560.

[18]  Walter Feit,et al.  Characters of finite groups , 1965 .

[19]  R. Zwicky,et al.  Explicit and spontaneous breaking of SU(3) into its finite subgroups , 2011, 1110.4891.

[20]  M. Fischer,et al.  Heterotic non-abelian orbifolds , 2013, 1304.7742.

[21]  T. Damhus On the existence of real Clebsch–Gordan coefficients , 1981 .

[22]  G. Ramírez,et al.  Antisymmetric tensor Zp gauge symmetries in field theory and string theory , 2013, 1310.5582.

[23]  H. Haber,et al.  A Group-theoretic Condition for Spontaneous CP Violation , 2012, 1201.1730.

[24]  Tatsuo C. Kobayashi,et al.  Non-Abelian Discrete Symmetries in Particle Physics , 2010, 1003.3552.

[25]  M. Gronau,et al.  CP RESTRICTIONS ON QUARK MASS MATRICES , 1986 .

[26]  M. Lindner,et al.  CP and discrete flavour symmetries , 2012, 1211.6953.

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  James E. Gentle Algorithms and Programming , 2009 .

[29]  E. Ma,et al.  Softly broken A(4) symmetry for nearly degenerate neutrino masses , 2001, hep-ph/0106291.

[30]  E. Ma Neutrino Mass Matrix from Delta(27) Symmetry , 2006, hep-ph/0607056.

[31]  H. Matsuyama,et al.  A twisted version of the Frobenius-Schur indicator and multiplicity-free permutation representations , 1990 .

[32]  G. Ecker,et al.  Spontaneous CP violation in left-right symmetric gauge theories , 1984 .

[33]  Loewy,et al.  Basis-independent tests of CP nonconservation in fermion-mass matrices. , 1986, Physical Review Letters.