Approximate algorithms for computing the minimum distance of low-density parity-check codes

We propose a family of randomized approximate algorithms, called nearest nonzero codewords search (NNCS), for computing the minimum distance of low-density parity-check (LDPC) codes, including Gallager-type and finite-geometry-type codes.

[1]  C. Berrou,et al.  Computing the minimum distances of linear codes by the error impulse method , 2002, Proceedings IEEE International Symposium on Information Theory,.

[2]  Claude Berrou,et al.  Computing the minimum distance of linear codes by the error impulse method , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[3]  Marc P. C. Fossorier,et al.  Quasi-Cyclic Codes from a Finite Affine Plane , 2006, Des. Codes Cryptogr..

[4]  Marc P. C. Fossorier,et al.  Iterative reliability based decoding of LDPC codes , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[5]  M. Fossorier,et al.  Quasicyclic codes from a finite affine plane , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[6]  Evangelos Eleftheriou,et al.  On the computation of the minimum distance of low-density parity-check codes , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).