Geophysical evolution of Saturn’s satellite Phoebe, a large planetesimal in the outer Solar System

Abstract Saturn’s satellite Phoebe is the best-characterized representative of large outer Solar System planetesimals, thanks to the close flyby by the Cassini spacecraft in June 2004. We explore the information contained in Phoebe’s physical properties, density and shape, which are significantly different from those of other icy objects in its size range. Phoebe’s higher density has been interpreted as evidence that it was captured, probably from the proto-Kuiper-Belt. First, we demonstrate that Phoebe’s shape is globally relaxed and consistent with a spheroid in hydrostatic equilibrium with its rotation period. This distinguishes the satellite from ‘rubble-piles’ that are thought to result from the disruption of larger proto-satellites. We numerically model the geophysical evolution of Phoebe, accounting for the feedback between porosity and thermal state. We compare thermal evolution models for different assumptions on the formation of Phoebe, in particular the state of its water, amorphous or crystalline. We track the evolution of porosity and thermal conductivity as well as the destabilization of amorphous ice or clathrate hydrates. While rubble-piles may never reach temperatures suitable for porous ice to creep and relax, we argue that Phoebe’s shape could have relaxed due to heat from the decay of 26Al, provided that this object formed less than 3 Myr after the production of the calcium–aluminum inclusions. This is consistent with the idea that Phoebe could be an exemplar of planetesimals that formed in the transneptunian region and later accreted onto outer planet satellites, either during the satellite’s formation stage, or still later, during the late heavy bombardment.

[1]  K. Kossacki,et al.  Kinetics of compaction of granular ices H2O, CO2 and (NH3)x(H2O)1 −x at pressures of 2–20 MPa and in temperatures of 100–270 K. Application to the physics of the icy satellites , 1995 .

[2]  D. Prialnik,et al.  Crystallization of amorphous ice as the cause of comet P/Halley's outburst at 14 AU. , 1992, Astronomy and astrophysics.

[3]  J. S. Lewis,et al.  Kinetic inhibition of CO and N2 reduction in the solar nebula , 1980 .

[4]  W. Durham RHEOLOGICAL PROPERTIES OF WATER ICE—APPLICATIONS TO SATELLITES OF THE OUTER PLANETS 1 , 2001 .

[5]  Stephen H. Kirby,et al.  The strength and rheology of methane clathrate hydrate , 2003 .

[6]  J. Lunine,et al.  Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system , 1985 .

[7]  Jason C. Cook,et al.  Thermal evolution of Kuiper belt objects, with implications for cryovolcanism , 2009 .

[8]  T. Pradeep,et al.  Structural Reorganization on Amorphous Ice Films below 120 K Revealed by Near-Thermal (∼1 eV) Ion Scattering , 2008 .

[9]  O. Andersson,et al.  Thermal conductivity of low-density amorphous ice , 1994 .

[10]  C. Sotin,et al.  Iapetus’ geophysics : rotation rate, shape, and equatorial ridge , 2007 .

[11]  Robert Jedicke,et al.  The fossilized size distribution of the main asteroid belt , 2003 .

[12]  T. Encrenaz,et al.  Oxygen and Other Volatiles in the Giant Planets and their Satellites , 2008 .

[13]  V. Dorofeeva,et al.  Hydrated Silicates on Edgeworth-Kuiper Objects - Probable Ways of Formation , 2003 .

[14]  R. Pohl,et al.  Annealing of amorphous ice films , 1996 .

[15]  H. McSween,et al.  Asteroidal Heating and Thermal Stratification of the Asteroidal Belt , 2006 .

[16]  R. Pohl,et al.  Elastic properties of amorphous and crystalline ice films , 1996 .

[17]  R. Prinn,et al.  Kinetic inhibition of CO and N2 reduction in circumplanetary nebulae - Implications for satellite composition , 1981 .

[18]  G. Schubert,et al.  Conditions for pore water convection within carbonaceous chondrite parent bodies – implications for planetesimal size and heat production , 2003 .

[19]  Jonathan I. Lunine,et al.  Saturn's moon Phoebe as a captured body from the outer Solar System , 2005, Nature.

[20]  J. Lunine,et al.  An interpretation of the nitrogen deficiency in comets , 2003 .

[21]  Julie C. Castillo-Rogez,et al.  Evolution of Titan's rocky core constrained by Cassini observations , 2010 .

[22]  K. Kossacki,et al.  Evolution of porosity in small icy bodies , 2000 .

[23]  I. Avramov,et al.  The glass transition temperature of silicate and borate glasses , 2005 .

[24]  T. Owen,et al.  The Composition of Centaur 5145 Pholus , 1998 .

[25]  B. Chazallon,et al.  Chemical physics of air clathrate hydrates , 2000 .

[26]  A. Pathare,et al.  Mobility of icy sand packs, with application to Martian permafrost , 2009 .

[27]  D. Möhlmann The influence of van der Waals forces on the state of water in the shallow subsurface of Mars , 2008 .

[28]  Mathieu Choukroun,et al.  Phase Behaviour of Ices and Hydrates , 2010 .

[29]  K. Tsiganis,et al.  Chaotic capture of Jupiter's Trojan asteroids in the early Solar System , 2005, Nature.

[30]  Ji-Ho Yoon,et al.  Generalized model for predicting phase behavior of clathrate hydrate , 2002 .

[31]  D. Prialnik,et al.  Growth and evolution of small porous icy bodies with an adaptive-grid thermal evolution code. I. Application to Kuiper belt objects and Enceladus , 2008 .

[32]  C. Clauser,et al.  Thermal Conductivity of Rocks and Minerals , 2013 .

[33]  J. Lunine,et al.  26Al decay: Heat production and a revised age for Iapetus , 2009 .

[34]  Dale P. Cruikshank,et al.  The solar system beyond Neptune , 2008 .

[35]  D. Cruikshank,et al.  Water Ice on Nereid , 1999 .

[36]  J. Burns,et al.  Shapes of the saturnian icy satellites and their significance , 2007 .

[37]  M. Erol,et al.  Measurement of solid–liquid interfacial energy in the pyrene succinonitrile monotectic system , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[38]  W. Seyfried,et al.  Serpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems , 2004 .

[39]  Jeffrey S. Kargel,et al.  Rheological properties of ammonia-water liquids and crystal-liquid slurries - Planetological applications , 1991 .

[40]  F. Rietmeijer A model for diagenesis in proto-planetary bodies , 1985, Nature.

[41]  M. Skrutskie,et al.  Saturn's largest ring , 2009, Nature.

[42]  D. Stevenson,et al.  Viscosity of rock-ice mixtures and applications to the evolution of icy satellites☆ , 1983 .

[43]  D. W. Parcher,et al.  The Gravity Field of the Saturnian System from Satellite Observations and Spacecraft Tracking Data , 2006 .

[44]  F. Ryerson,et al.  Experimental constraints on the chemical evolution of large icy satellites , 2002 .

[45]  N. Emelyanov The mass of Himalia from the perturbations on other satellites , 2005 .

[46]  J. Greenberg,et al.  Conditions for condensation and preservation of amorphous ice and crystallinity of astrophysical ices , 1994 .

[47]  C. Angell Liquid fragility and the glass transition in water and aqueous solutions. , 2002, Chemical reviews.

[48]  Ralf Jaumann,et al.  Compositional maps of Saturn's moon Phoebe from imaging spectroscopy , 2005, Nature.

[49]  D. Blake,et al.  Crystallization of Amorphous Water Ice in the Solar System , 1996, The Astrophysical journal.

[50]  O. Andersson,et al.  Thermal conductivity of crystalline and amorphous ices and its implications on amorphization and glassy water. , 2005, Physical chemistry chemical physics : PCCP.

[51]  D. Lauretta,et al.  A Nebular Origin for Chondritic Fine-Grained Phyllosilicates , 2003, Science.

[52]  Daniel T. Britt,et al.  Stony meteorite porosities and densities: A review of the data through 2001 , 2003 .

[53]  H. Beust,et al.  A new perspective on the irregular satellites of Saturn - I Dynamical and collisional history , 2008, 1011.5655.

[54]  C. Sotin,et al.  Episodic outgassing as the origin of atmospheric methane on Titan , 2005, Nature.

[55]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[56]  S. Squyres,et al.  Accretional heating of the satellites of Saturn and Uranus , 1987 .

[57]  J. Kay,et al.  Phoebe: Albedo Map and Photometric Properties , 1999 .

[58]  M. W. Buie,et al.  Orbits and Photometry of Pluto’s Satellites: Charon, S/2005 P1, and S/2005 P2 , 2005, astro-ph/0512491.

[59]  D. Blake,et al.  Structural transitions in amorphous water ice and astrophysical implications. , 1994, Science.

[60]  R. Canup,et al.  Constraints on gas giant satellite formation from the interior states of partially differentiated satellites , 2008 .

[61]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[62]  Harold F. Levison,et al.  Orbital and Collisional Evolution of the Irregular Satellites , 2003 .

[63]  J. Greenberg,et al.  Thermal history of comets during residence in the Oort Cloud: Effect of radiogenic heating in combination with the very low thermal conductivity of amorphous ice , 1993 .

[64]  J. Bauer,et al.  Recovering the Rotational Light Curve of Phoebe , 2004 .

[65]  Yash Paul Handa,et al.  Compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of methane, ethane, and propane, and enthalpy of dissociation of isobutane hydrate, as determined by a heat-flow calorimeter , 1986 .

[66]  G. Neukum,et al.  Topographic modeling of Phoebe using Cassini images , 2006 .

[67]  Harold F. Levison,et al.  Contamination of the asteroid belt by primordial trans-Neptunian objects , 2009, Nature.

[68]  A. Bar-Nun,et al.  Trapping of Methanol, Hydrogen Cyanide, andn-Hexane in Water Ice, above Its Transformation Temperature to the Crystalline Form , 1997 .

[69]  P. Farinella,et al.  FORMATION AND COLLISIONAL EVOLUTION OF THE EDGEWORTH-KUIPER BELT , 2007 .

[70]  W. R. Schmus,et al.  Natural Radioactivity of the Crust and Mantle , 2013 .

[71]  Stanley L. Miller,et al.  Carbon Dioxide Clathrate in the Martian Ice Cap , 1970, Science.

[72]  A. Fortes Metasomatic clathrate xenoliths as a possible source for the south polar plumes of Enceladus , 2007 .

[73]  J. Greenberg,et al.  Extremely low thermal conductivity of amorphous ice - Relevance to comet evolution , 1992 .

[74]  Bruce Fegley,et al.  Solar nebula chemistry: origins of planetary, satellite and cometary volatiles , 1989 .

[75]  H. McSween,et al.  Water and the thermal evolution of carbonaceous chondrite parent bodies , 1989 .

[76]  J. Emery,et al.  Composition and Surface Properties of Transneptunian Objects and Centaurs , 2008 .

[77]  F. Marzari,et al.  A new perspective on the irregular satellites of Saturn – II. Dynamical and physical origin , 2010, 1011.5662.

[78]  E. Mayer,et al.  Amorphous ice, a microporous solid - Astrophysical implications , 1987 .

[79]  T. McCord,et al.  Ceres’ evolution and present state constrained by shape data , 2010 .

[80]  Daniel Gautier,et al.  Enrichment in volatiles in the giant planets of the Solar System , 2004 .

[81]  P. Thomas,et al.  Saturn's Small Inner Satellites: Clues to Their Origins , 2007, Science.

[82]  T. Owen,et al.  Gas trapping in water ice at very low deposition rates and implications for comets , 2003 .

[83]  William R. Ward,et al.  Formation of the Galilean Satellites: Conditions of Accretion , 2002 .

[84]  O. Mishima,et al.  High‐density amorphous ice. III. Thermal properties , 1986 .

[85]  J. Pollack,et al.  Composition and radiative properties of grains in molecular clouds and accretion disks , 1994 .

[86]  Carolyn A. Koh,et al.  Clathrate hydrates of natural gases , 1990 .

[87]  R. G. Ross,et al.  Thermal Conductivity of Solar System Ices, with Special Reference to Martian Polar Caps , 1998 .

[88]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[89]  G. Schubert,et al.  Hydrothermal convection in carbonaceous chondrite parent bodies , 2005 .

[90]  K. Keil,et al.  Early aqueous alteration, explosive disruption, and reprocessing of asteroids , 1999 .

[91]  C. Sotin,et al.  Stability of methane clathrate hydrates under pressure: Influence on outgassing processes of methane on Titan , 2010 .

[92]  D. Gautier,et al.  Formation and Composition of Planetesimals , 2005 .

[93]  P. Farinella,et al.  Hyperion: Collisional disruption of a resonant satellite☆ , 1983 .

[94]  S. Ostro,et al.  Dynamical Configuration of Binary Near-Earth Asteroid (66391) 1999 KW4 , 2006, Science.

[95]  P. Plavchan,et al.  A Spitzer Study of Debris Disks in the Young Nearby Cluster NGC 2232: Icy Planets Are Common around ~1.5-3 M☉ Stars , 2008, 0807.2056.

[96]  E. Schaller,et al.  The Mass of Dwarf Planet Eris , 2007, Science.

[97]  T. Roush,et al.  Detection of Water Ice on Saturn's Satellite Phoebe , 1999 .

[98]  Peter C. Thomas,et al.  Gravity, Tides, and Topography on Small Satellites and Asteroids: Application to Surface Features of the Martian Satellites , 1993 .

[99]  A. Kouchi,et al.  Crystallization heat of impure amorphous H2O ice , 2001 .

[100]  Xinli Lu,et al.  A Clathrate Reservoir Hypothesis for Enceladus' South Polar Plume , 2006, Science.

[101]  D. Waples,et al.  A Review and Evaluation of Specific Heat Capacities of Rocks, Minerals, and Subsurface Fluids. Part 2: Fluids and Porous Rocks , 2004 .

[102]  Joseph A. Burns,et al.  Discovery of 12 satellites of Saturn exhibiting orbital clustering , 2001, Nature.

[103]  J. Lunine,et al.  CLATHRATION OF VOLATILES IN THE SOLAR NEBULA AND IMPLICATIONS FOR THE ORIGIN OF TITAN'S ATMOSPHERE , 2008, 0810.0308.

[104]  J. Castillo‐Rogez,et al.  Geophysical evolution of the Themis family parent body , 2010 .

[105]  R. Baragiola,et al.  Density and index of refraction of water ice films vapor deposited at low temperatures , 1998 .

[106]  R. Smoluchowski Clathrate hydrates in cometary nuclei and porosity , 1987 .

[107]  E. Dartois,et al.  Methane clathrate hydrate FTIR spectrum - Implications for its cometary and planetary detection , 2008 .

[108]  M. Asplund,et al.  The New Solar Chemical Composition , 2005 .

[109]  T. Onasch,et al.  Experimental Studies of Vapor-Deposited Water-Ice Films Using Grazing-Angle FTIR-Reflection Absorption Spectroscopy , 1997 .

[110]  M. Asplund,et al.  The Solar Chemical Composition , 2007 .

[111]  G. Kuiper On the origin of asteroids , 1950 .

[112]  D. Davis,et al.  Formation and Collisional Evolution of Kuiper Belt Objects , 2007, 0704.0259.

[113]  J. Goguen,et al.  Carbon dioxide segregation in 1:4 and 1:9 CO2:H2O ices , 2008 .

[114]  A. Hendrix,et al.  Ultraviolet observations of Phoebe from the Cassini UVIS , 2008 .

[115]  P. Thomas Ejecta Emplacement on the Martian Satellites , 1998 .

[116]  Andrew S. Rivkin,et al.  Detection of ice and organics on an asteroidal surface , 2010, Nature.

[117]  Olivier Grasset,et al.  On the internal structure and dynamics of Titan , 1998 .

[118]  Angioletta Coradini,et al.  Hydrocarbons on Saturn's satellites Iapetus and Phoebe , 2008 .

[119]  D. Prialnik,et al.  Long-Term Evolution of Objects in the Kuiper Belt Zone—Effects of Insolation and Radiogenic Heating , 2002 .

[120]  M. Arakawa,et al.  Compaction experiments on ice-silica particle mixtures: Implication for residual porosity of small icy bodies , 2009 .

[121]  M. Tomasko,et al.  Analysis of the Near-IR Spectrum of Saturn: A Comprehensive Radiative Transfer Model of Its Middle and Upper Troposphere , 1997 .

[122]  A. Cheng,et al.  Viscous relaxation on comets , 2006 .

[123]  J. Castillo‐Rogez Ceres – Neither a porous nor salty ball , 2011 .

[124]  P. Spurný,et al.  Meteorites from the Outer Solar System , 2008 .

[125]  A. Wenger,et al.  Physico-chemical phenomena in comets—I: Experimental study of snows in a cometary environment , 1970 .

[126]  Hanfu Wang,et al.  Sticky Ice Grains Aid Planet Formation: Unusual Properties of Cryogenic Water Ice , 2005 .

[127]  J. Klinger Influence of a Phase Transition of Ice on the Heat and Mass Balance of Comets , 1980, Science.

[128]  W. Bottke,et al.  Towards initial mass functions for asteroids and Kuiper Belt Objects , 2010, 1004.0270.

[129]  T. Johnson,et al.  Origin of the Saturn System , 2009 .

[130]  W. Durham,et al.  Cold compaction of water ice , 2005 .

[131]  Michael A. Wilson,et al.  High-Density Amorphous Ice, the Frost on Interstellar Grains , 1995 .

[132]  D. Prialnik,et al.  Thermal and Chemical Evolution of Comet Nuclei and Kuiper Belt Objects , 2008 .

[133]  J. Veverka,et al.  The generation and use of numerical shape models for irregular Solar System objects , 1993 .

[134]  M. W. Evans,et al.  Cassini Imaging Science: Initial Results on Phoebe and Iapetus , 2005, Science.

[135]  D. Jewitt,et al.  Crystalline water ice on the Kuiper belt object (50000) Quaoar , 2004, Nature.

[136]  T. Keller,et al.  Modelling the poroelasticity of rocks and ice , 1999 .

[137]  J. Lunine,et al.  Sublimation and reformation of icy grains in the primitive solar nebula , 1991 .

[138]  J. Lunine,et al.  Interpretation of the carbon abundance in Saturn measured by Cassini , 2008 .

[139]  A. Bar-Nun,et al.  The Effect of Methanol Clathrate-Hydrate Formation and Other Gas-Trapping Mechanisms on the Structure and Dynamics of Cometary Ices , 2000 .

[140]  Modeling of Liquid Water on CM Meteorite Parent Bodies and Implications for Amino Acid Racemization , 1999, physics/9911032.

[141]  S. Miller Clathrate Hydrates in the Solar System , 1985 .

[142]  D. Britt,et al.  Asteroid Density, Porosity, and Structure , 2002 .

[143]  T. Johnson,et al.  Irregular Satellites of the Giant Planets , 2008 .

[144]  Angioletta Coradini,et al.  Identification of spectral units on Phoebe , 2008 .

[145]  Tetsuo Yamamoto,et al.  Internal evolution of an icy planetesimal: The evolution of the temperature, chemical composition and mechanical properties , 1999 .

[146]  Christopher F Chyba,et al.  Clathrate hydrates of oxidants in the ice shell of Europa. , 2006, Astrobiology.

[147]  S. Weidenschilling From icy grains to comets , 2004 .

[148]  Ted L. Roush,et al.  Near-Infrared Spectroscopy of Charon: Possible Evidence for Cryovolcanism on Kuiper Belt Objects , 2006 .

[149]  R. Clark,et al.  Infrared (0.83–5.1 μm) photometry of Phoebe from the Cassini Visual Infrared Mapping Spectrometer , 2008 .

[150]  C. Delire,et al.  HYDROSTATIC FLATTENING, CORE STRUCTURE, AND TRANSLATIONAL MODE OF THE INNER CORE , 1997 .

[151]  John S. Lewis,et al.  Low temperature condensation from the solar nebula , 1972 .

[152]  S. K. Croft,et al.  Voyager 2 at Neptune: Imaging Science Results , 1989, Science.

[153]  J. Ripmeester,et al.  129Xe nuclear magnetic resonance in the clathrate hydrate of xenon , 1981 .

[154]  V. Zharkov,et al.  Models, figures, and gravitational moments of the Galilean satellites of Jupiter and icy satellites of Saturn , 1985 .

[155]  Elizabeth A. Lada,et al.  Disk Frequencies and Lifetimes in Young Clusters , 2001, astro-ph/0104347.

[156]  T. Johnson,et al.  Topography on satellite surfaces and the shape of asteroids , 1973 .