Proper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: Application to harbor agitation

[1]  Kari Karhunen,et al.  Über lineare Methoden in der Wahrscheinlichkeitsrechnung , 1947 .

[2]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[3]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[4]  J. Berkhoff,et al.  Computation of Combined Refraction — Diffraction , 1972 .

[5]  Samuel P. Marin,et al.  Variational methods for underwater acoustic problems , 1978 .

[6]  Ahmed K. Noor,et al.  Reduced Basis Technique for Nonlinear Analysis of Structures , 1979 .

[7]  Temple H. Fay,et al.  The Butterfly Curve , 1989 .

[8]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[9]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[10]  I. Babuska,et al.  Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .

[11]  Ivo Babuška,et al.  A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution , 1995 .

[12]  P. Pinsky,et al.  A galerkin least-squares finite element method for the two-dimensional Helmholtz equation , 1995 .

[13]  I. Babuska,et al.  Finite Element Solution of the Helmholtz Equation with High Wave Number Part II: The h - p Version of the FEM , 1997 .

[14]  M. W. Dingemans,et al.  Water Wave Propagation Over Uneven Bottoms , 1997 .

[15]  P. Monk,et al.  Optimizing the Perfectly Matched Layer , 1998 .

[16]  S. Tsynkov Numerical solution of problems on unbounded domains. a review , 1998 .

[17]  I. Babuska,et al.  Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions , 1999 .

[18]  Dan Givoli,et al.  Recent advances in the DtN FE Method , 1999 .

[19]  Rasmus Bro,et al.  The N-way Toolbox for MATLAB , 2000 .

[20]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[21]  A. Chopra,et al.  Perfectly matched layers for time-harmonic elastodynamics of unbounded domains : Theory and finite-element implementation , 2003 .

[22]  Pierre Ladevèze,et al.  The variational theory of complex rays: a predictive tool for medium-frequency vibrations , 2003 .

[23]  D. Givoli High-order local non-reflecting boundary conditions: a review☆ , 2004 .

[24]  I. Singer,et al.  A perfectly matched layer for the Helmholtz equation in a semi-infinite strip , 2004 .

[25]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[26]  L. Demkowicz,et al.  A few new (?) facts about infinite elements , 2006 .

[27]  Francisco Chinesta,et al.  On the Reduction of Kinetic Theory Models Related to Finitely Extensible Dumbbells , 2006 .

[28]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .

[29]  Leszek Demkowicz,et al.  Improving the performance of perfectly matched layers by means of hp‐adaptivity , 2007, Numerical Methods for Partial Differential Equations.

[30]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids - Part II: Transient simulation using space-time separated representations , 2007 .

[31]  Alfredo Bermúdez,et al.  An Exact Bounded Perfectly Matched Layer for Time-Harmonic Scattering Problems , 2007, SIAM J. Sci. Comput..

[32]  A. Nouy A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .

[33]  Dan Givoli,et al.  Computational Absorbing Boundaries , 2008 .

[34]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[35]  Francisco Chinesta,et al.  Alleviating mesh constraints : Model reduction, parallel time integration and high resolution homogenization , 2008 .

[36]  Abimael F. D. Loula,et al.  A quasi optimal Petrov–Galerkin method for Helmholtz problem , 2009 .

[37]  F. Chinesta,et al.  Recent advances on the use of separated representations , 2009 .

[38]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[39]  Pedro Díez,et al.  An error estimator for separated representations of highly multidimensional models , 2010 .

[40]  P. Ladevèze,et al.  The LATIN multiscale computational method and the Proper Generalized Decomposition , 2010 .

[41]  Dan Givoli,et al.  Comparison of high‐order absorbing boundary conditions and perfectly matched layers in the frequency domain , 2010 .

[42]  A. Nouy A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations , 2010 .

[43]  Elías Cueto,et al.  Proper generalized decomposition of multiscale models , 2010 .

[44]  A. Huerta,et al.  NURBS-Enhanced Finite Element Method (NEFEM) , 2011 .

[45]  A Vion,et al.  A Model Reduction Algorithm for Solving Multiple Scattering Problems Using Iterative Methods , 2011, IEEE Transactions on Magnetics.

[46]  F. Chinesta,et al.  A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .

[47]  Elías Cueto,et al.  Proper generalized decomposition of time‐multiscale models , 2012 .

[48]  Jan S. Hesthaven,et al.  Certified reduced basis method for electromagnetic scattering and radar cross section estimation , 2012 .

[49]  Charbel Farhat,et al.  Review and assessment of interpolatory model order reduction methods for frequency response structural dynamics and acoustics problems , 2012 .

[50]  G. Rozza,et al.  ON THE APPROXIMATION OF STABILITY FACTORS FOR GENERAL PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS WITH A TWO-LEVEL AFFINE DECOMPOSITION , 2012 .

[51]  Benjamin Stamm,et al.  A reduced basis method for electromagnetic scattering by multiple particles in three dimensions , 2012, J. Comput. Phys..

[52]  Antonio Huerta,et al.  NURBS-Enhanced Finite Element Method ( NEFEM ) A Seamless Bridge Between CAD and FEM , 2012 .

[53]  A. Ammar,et al.  PGD-Based Computational Vademecum for Efficient Design, Optimization and Control , 2013, Archives of Computational Methods in Engineering.

[54]  S. Imperiale,et al.  Perfectly matched transmission problem with absorbing layers: Application to anisotropic acoustics in convex polygonal domains , 2013 .

[55]  H. Bériot,et al.  Analysis of high‐order finite elements for convected wave propagation , 2013 .

[56]  A. Huerta,et al.  High‐order continuous and discontinuous Galerkin methods for wave problems , 2013 .

[57]  Pierre Ladevèze,et al.  Proper Generalized Decomposition applied to linear acoustic: A new tool for broad band calculation , 2014 .

[58]  A. Huerta,et al.  Parametric solutions involving geometry: A step towards efficient shape optimization , 2014 .

[59]  Pedro Díez,et al.  Proper generalized decomposition of a geometrically parametrized heat problem with geophysical applications , 2015 .

[60]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[61]  Abubakr Gafar Abdalla,et al.  Probability Theory , 2017, Encyclopedia of GIS.