Hot time periods discovery for facility proportioning in urban commercial districts using POIs and mobile phone data

[1]  Ryosuke Shibasaki,et al.  Activity-Aware Map: Identifying Human Daily Activity Pattern Using Mobile Phone Data , 2010, HBU.

[2]  M. Tahar Kechadi,et al.  Android and Wireless data-extraction using Wi-Fi , 2014, Fourth edition of the International Conference on the Innovative Computing Technology (INTECH 2014).

[3]  Chung-Chu Liu,et al.  Measuring and prioritising value of mobile phone usage , 2010, Int. J. Mob. Commun..

[4]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[5]  Ray A. Jarvis,et al.  On the Identification of the Convex Hull of a Finite Set of Points in the Plane , 1973, Inf. Process. Lett..

[6]  Carlo Ratti,et al.  Cellular Census: Explorations in Urban Data Collection , 2007, IEEE Pervasive Computing.

[7]  Yang Yue,et al.  Using Mobile Phone Location Data for Urban Activity Analysis , 2013, BSI@PAKDD/BSIC@IJCAI.

[8]  Carlo Ratti,et al.  Real-Time Urban Monitoring Using Cell Phones: A Case Study in Rome , 2011, IEEE Transactions on Intelligent Transportation Systems.

[9]  Alex Pentland,et al.  Reality mining: sensing complex social systems , 2006, Personal and Ubiquitous Computing.

[10]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[11]  Carlo Ratti,et al.  Real time Rome , 2006 .

[12]  Albert-László Barabási,et al.  Limits of Predictability in Human Mobility , 2010, Science.

[13]  Ram Dantu,et al.  CPL: Enhancing Mobile Phone Functionality by Call Predicted List , 2008, OTM Workshops.

[14]  Carlo Ratti,et al.  Mobile Landscapes: Using Location Data from Cell Phones for Urban Analysis , 2006 .

[15]  Zbigniew Smoreda,et al.  Everyday space–time geographies: using mobile phone-based sensor data to monitor urban activity in Harbin, Paris, and Tallinn , 2015, Int. J. Geogr. Inf. Sci..

[16]  Zhiyuan Zhou,et al.  Mining Mobile Phone Base Station Data Based on Clustering Algorithms with Application to Public Traffic Route Design , 2017, ICONIP.

[17]  Wen-Chih Peng,et al.  Exploring Location-Related Data on Smart Phones for Activity Inference , 2014, 2014 IEEE 15th International Conference on Mobile Data Management.

[18]  Daniel Gatica-Perez,et al.  The Places of Our Lives: Visiting Patterns and Automatic Labeling from Longitudinal Smartphone Data , 2014, IEEE Transactions on Mobile Computing.

[19]  Klara Nahrstedt,et al.  Jyotish: A novel framework for constructing predictive model of people movement from joint Wifi/Bluetooth trace , 2011, 2011 IEEE International Conference on Pervasive Computing and Communications (PerCom).

[20]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[21]  Andrea Vitaletti,et al.  Cell-ID location technique, limits and benefits: an experimental study , 2004, Sixth IEEE Workshop on Mobile Computing Systems and Applications.

[22]  Robert C. Nickerson,et al.  A multi-national study of attitudes about mobile phone use in social settings , 2008, Int. J. Mob. Commun..

[23]  Xing Xie,et al.  Discovering regions of different functions in a city using human mobility and POIs , 2012, KDD.