Infectious Agent Detection With SERS-Active Silver Nanorod Arrays Prepared by Oblique Angle Deposition

The aligned silver nanorod array substrates prepared by the oblique angle deposition method are capable of providing extremely high enhancement factors (~5times108) at near-infrared wavelengths (785 nm) for a standard reporter molecule 1,2 trans-(bis)pyridyl-ethene (BPE). The enhancement factor depends strongly on the length of the Ag nanorods, the substrate coating, the polarization of the excitation light, as well as the incident angle. With the current optimum structure, we demonstrate that the detection limit for BPE can be lower than 0.1 fM. We also show that this surface-enhanced Raman spectroscopy (SERS)-active substrate can serve as a sensor to detect and differentiate the molecular fingerprints of several important human pathogens, particularly, respiratory syncytial virus, human immunodeficiency virus, rotavirus, and the bacterium Mycoplasma pneumoniae. Utilizing chemometric methods, SERS nanorod array data can be used to sensitively detect and to classify viruses at the strain level. These results suggest that the SERS Ag nanorod array is a powerful technique for direct, rapid, and sensitive detection of infectious agents.

[1]  R. Goodacre,et al.  Discrimination of bacteria using surface-enhanced Raman spectroscopy. , 2004, Analytical chemistry.

[2]  L. Robillard,et al.  Validation of respiratory syncytial virus enzyme immunoassay and shell vial assay results , 1994, Journal of clinical microbiology.

[3]  J. Jensen,et al.  Molecular typing of Mycoplasma pneumoniae strains by PCR-based methods and pulsed-field gel electrophoresis. Application to French and Danish isolates , 2000, Epidemiology and Infection.

[4]  Kathy L. Rowlen,et al.  Quantitative Comparison of Five SERS Substrates: Sensitivity and Limit of Detection , 1997 .

[5]  J. Tully,et al.  Pathogenic mycoplasmas: cultivation and vertebrate pathogenicity of a new spiroplasma. , 1977, Science.

[6]  M. Moskovits Surface‐enhanced Raman spectroscopy: a brief retrospective , 2005 .

[7]  Royston Goodacre,et al.  Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface. , 2004, Analytical chemistry.

[8]  J. Petitjean,et al.  Detection of respiratory syncytial virus by reverse transcription-PCR and hybridization with a DNA enzyme immunoassay , 1995, Journal of clinical microbiology.

[9]  Paul R. Carey,et al.  Biochemical Applications of Raman and Resonance Raman Spectroscopies , 1982 .

[10]  M. L. Laucks,et al.  Comparison of Psychro-Active Arctic Marine Bacteria and Common Mesophillic Bacteria Using Surface-Enhanced Raman Spectroscopy , 2005, Applied spectroscopy.

[11]  L. Anderson,et al.  Respiratory Syncytial Virus G and/or SH Protein Alters Th1 Cytokines, Natural Killer Cells, and Neutrophils Responding to Pulmonary Infection in BALB/c Mice , 1999, Journal of Virology.

[12]  R. George,et al.  Real-time detection of Mycoplasma pneumoniae in respiratory samples with an internal processing control. , 2006, Journal of medical microbiology.

[13]  P. Liao,et al.  Surface-enhanced Raman scattering on gold and aluminum particle arrays. , 1982, Optics letters.

[14]  John F. Kennedy,et al.  Practical Guide to Chemometrics, 2nd edition, P. Gemperline (Ed.). CRC Press, Boca Raton, FL, USA (2006), , 541 pp., £ 99-00, ISBN: 1-57444-783-1 , 2007 .

[15]  George C. Schatz,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[16]  S. B. Chaney,et al.  Polarized surface enhanced Raman and absorbance spectra of aligned silver nanorod arrays. , 2006, The journal of physical chemistry. B.

[17]  D A Weitz,et al.  Excitation spectra of surface-enhanced Raman scattering on silver-island films. , 1982, Optics letters.

[18]  David E. Booth,et al.  Chemometrics: Data Analysis for the Laboratory and Chemical Plant , 2004, Technometrics.

[19]  A. Vabret,et al.  Infections à Mycoplasma pneumoniae : étude rétrospective en Basse-Normandie de 1997 à 2005. Épidémiologie –– Place de la sérologie et de la PCR pour le diagnostic , 2006, Pathologie Biologie.

[20]  Bernhard Lamprecht,et al.  Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering , 2002 .

[21]  Royston Goodacre,et al.  Surface-enhanced Raman scattering for the rapid discrimination of bacteria. , 2006, Faraday discussions.

[22]  Yiping Zhao,et al.  Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates , 2005 .

[23]  W. Weimer,et al.  High enhancement factor gold films for surface enhanced Raman spectroscopy , 2003 .

[24]  M. Porter,et al.  Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay. , 2005, Analytical chemistry.

[25]  Tieqiao Wu,et al.  Surface-enhanced Raman spectroscopy of insect nuclear polyhedrosis virus , 2001 .

[26]  Atanu Sengupta,et al.  Surface-Enhanced Raman Spectroscopy of Bacteria and Pollen , 2005, Applied spectroscopy.

[27]  E. Palombo,et al.  Genetic variation of NSP1 and NSP4 genes among serotype G9 rotaviruses causing hospitalization of children in Melbourne, Australia, 1997–2002 , 2006, Journal of medical virology.

[28]  Yiping Zhao,et al.  Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. , 2006, Nano letters.

[29]  George C. Schatz,et al.  A surface‐enhanced hyper‐Raman and surface‐enhanced Raman scattering study of trans‐1,2‐bis(4‐pyridyl)ethylene adsorbed onto silver film over nanosphere electrodes. Vibrational assignments: Experiment and theory , 1996 .

[30]  Augustus W Fountain,et al.  Classification of Chemical and Biological Warfare Agent Simulants by Surface-Enhanced Raman Spectroscopy and Multivariate Statistical Techniques , 2006, Applied spectroscopy.

[31]  Edgar Voges,et al.  Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures , 2000 .

[32]  Randall D. Tobias,et al.  Chemometrics: A Practical Guide , 1998, Technometrics.

[33]  Burt V. Bronk,et al.  Silver metal induced surface enhanced Raman of bacteria , 2002 .

[34]  M. Klempner,et al.  Characterization of the surface enhanced raman scattering (SERS) of bacteria. , 2005, The journal of physical chemistry. B.

[35]  P. Gemperline Practical Guide To Chemometrics , 2006 .

[36]  Laurie L. Wood,et al.  New biochip technology for label-free detection of pathogens and their toxins. , 2003, Journal of microbiological methods.

[37]  M. Kundi,et al.  Improved detection of respiratory syncytial virus in nasal aspirates by seminested RT‐PCR , 1997, Journal of medical virology.

[38]  C. Haynes,et al.  Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics , 2001 .

[39]  M. Kerker,et al.  Effect of aggregates on extinction and surface-enhanced Raman scattering spectra of colloidal silver , 1984 .

[40]  J. Schwartzman,et al.  Detection of respiratory syncytial virus in nasal secretions from infants by enzyme-linked immunosorbent assay. , 1979, The Journal of infectious diseases.