A Topology Optimization Formulation Applied to Highly Flexible Structures
暂无分享,去创建一个
[1] G.K.H. Pang,et al. A Single-Axis Low-Cost Accelerometer Fabricated Using Printed-Circuit-Board Techniques , 2009, IEEE Electron Device Letters.
[2] K. Svanberg. The method of moving asymptotes—a new method for structural optimization , 1987 .
[3] No-Cheol Park,et al. Design of a Leaf Spring Using a Genetic Algorithm , 2011, IEEE Transactions on Magnetics.
[4] C. S. Jog,et al. A new approach to variable-topology shape design using a constraint on perimeter , 1996 .
[5] T. E. Bruns,et al. Topology optimization of non-linear elastic structures and compliant mechanisms , 2001 .
[6] Jorge Angeles,et al. Optimum Design of a Compliant Uniaxial Accelerometer , 2010 .
[7] M. Bendsøe,et al. Topology Optimization: "Theory, Methods, And Applications" , 2011 .
[8] Noboru Kikuchi,et al. TOPOLOGY OPTIMIZATION OF COMPLIANT MECHANISMS USING THE HOMOGENIZATION METHOD , 1998 .
[9] G. Buttazzo,et al. An optimal design problem with perimeter penalization , 1993 .
[10] N. Kikuchi,et al. A homogenization method for shape and topology optimization , 1991 .
[11] D. Chapelle,et al. The Finite Element Analysis of Shells - Fundamentals , 2003 .
[12] B. Bourdin. Filters in topology optimization , 2001 .
[13] M. Bendsøe. Optimal shape design as a material distribution problem , 1989 .
[14] Pierre Duysinx,et al. Dual approach using a variant perimeter constraint and efficient sub-iteration scheme for topology optimization , 2003 .