Computational understanding of Li-ion batteries

Over the last two decades, computational methods have made tremendous advances, and today many key properties of lithium-ion batteries can be accurately predicted by first principles calculations. For this reason, computations have become a cornerstone of battery-related research by providing insight into fundamental processes that are not otherwise accessible, such as ionic diffusion mechanisms and electronic structure effects, as well as a quantitative comparison with experimental results. The aim of this review is to provide an overview of state-of-the-art ab initio approaches for the modelling of battery materials. We consider techniques for the computation of equilibrium cell voltages, 0-Kelvin and finite-temperature voltage profiles, ionic mobility and thermal and electrolyte stability. The strengths and weaknesses of different electronic structure methods, such as DFT+U and hybrid functionals, are discussed in the context of voltage and phase diagram predictions, and we review the merits of lattice models for the evaluation of finite-temperature thermodynamics and kinetics. With such a complete set of methods at hand, first principles calculations of ordered, crystalline solids, i.e., of most electrode materials and solid electrolytes, have become reliable and quantitative. However, the description of molecular materials and disordered or amorphous phases remains an important challenge. We highlight recent exciting progress in this area, especially regarding the modelling of organic electrolytes and solid–electrolyte interfaces.

[1]  G. Ceder,et al.  Factors that affect Li mobility in layered lithium transition metal oxides , 2006 .

[2]  P. Balbuena,et al.  Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: reduction mechanisms of ethylene carbonate. , 2001, Journal of the American Chemical Society.

[3]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[4]  J. Tarascon,et al.  Origin of the 3.6 V to 3.9 V voltage increase in the LiFeSO4F cathodes for Li-ion batteries , 2012 .

[5]  Muratahan Aykol,et al.  The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies , 2015 .

[6]  D. Fontaine Cluster Approach to Order-Disorder Transformations in Alloys , 1994 .

[7]  J. Tse,et al.  Li ion diffusion mechanisms in LiFePO4: an ab initio molecular dynamics study. , 2011, The journal of physical chemistry. A.

[8]  Jianming Zheng,et al.  Structural and Chemical Evolution of Li- and Mn-Rich Layered Cathode Material , 2015 .

[9]  Gus L. W. Hart,et al.  Generating derivative structures at a fixed concentration , 2012 .

[10]  Y. Meng,et al.  Recent advances in first principles computational research of cathode materials for lithium-ion batteries. , 2013, Accounts of chemical research.

[11]  S. Curtarolo,et al.  AFLOW: An automatic framework for high-throughput materials discovery , 2012, 1308.5715.

[12]  J. Tarascon,et al.  Electrochemical data transferability within LiyVOXO4 (X = Si, Ge0.5Si0.5, Ge, Si0.5As0.5, Si0.5P0.5, As, P) polyoxyanionic compounds , 2007 .

[13]  J. Dahn,et al.  Ab initio calculation of the lithium-tin voltage profile , 1998 .

[14]  J. Tarascon,et al.  FeP: Another Attractive Anode for the Li-Ion Battery Enlisting a Reversible Two-Step Insertion/Conversion Process , 2006 .

[15]  Gerbrand Ceder,et al.  The electronic structure and band gap of LiFePO4 and LiMnPO4 , 2004, cond-mat/0506125.

[16]  Rahul Malik,et al.  Particle size dependence of the ionic diffusivity. , 2010, Nano letters.

[17]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[18]  Shyue Ping Ong,et al.  First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material , 2012 .

[19]  Byungchan Han,et al.  Integrated study of first principles calculations and experimental measurements for Li-ionic conductivity in Al-doped solid-state LiGe2(PO4)3 electrolyte , 2015 .

[20]  Anubhav Jain,et al.  Finding Nature′s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory. , 2010 .

[21]  P. Heitjans,et al.  Diffusion in Condensed Matter: Methods, Materials, Models , 2012 .

[22]  Gerbrand Ceder,et al.  Calibrating transition-metal energy levels and oxygen bands in first-principles calculations: Accurate prediction of redox potentials and charge transfer in lithium transition-metal oxides , 2015, 1507.08768.

[23]  M. Willinger,et al.  Galvanic Replacement Reactions in Metal Oxide Nanocrystals , 2013, Science.

[24]  Nav Nidhi Rajput,et al.  The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics. , 2015, Journal of the American Chemical Society.

[25]  Priyam A. Sheth,et al.  A First-Principles Analysis of Acetylene Hydrogenation over Pd(111) , 2003 .

[26]  Lei Wang,et al.  Li−Fe−P−O2 Phase Diagram from First Principles Calculations , 2008 .

[27]  Anton Van der Ven,et al.  Lithium Diffusion in Layered Li x CoO2 , 1999 .

[28]  G. Prado,et al.  Lithium batteries: a new tool in solid state chemistry , 1999 .

[29]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[30]  K. Kang,et al.  Polymorphism and phase transformations of Li2−xFeSiO4(0⩽x⩽2) from first principles , 2011 .

[31]  Lance J. Nelson,et al.  Compressive sensing as a paradigm for building physics models , 2013 .

[32]  F. Ducastelle,et al.  Generalized cluster description of multicomponent systems , 1984 .

[33]  C. Wolverton,et al.  Lithium Transport in Amorphous Al2O3 and AlF3 for Discovery of Battery Coatings , 2013 .

[34]  Yongyao Xia,et al.  Ti-based compounds as anode materials for Li-ion batteries , 2012 .

[35]  Gerbrand Ceder,et al.  Ordering in Lix(Ni0.5Mn0.5)O2 and its relation to charge capacity and electrochemical behavior in rechargeable lithium batteries , 2004 .

[36]  Gerbrand Ceder,et al.  The Configurational Space of Rocksalt‐Type Oxides for High‐Capacity Lithium Battery Electrodes , 2014 .

[37]  Anubhav Jain,et al.  Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations , 2010 .

[38]  John B. Goodenough,et al.  The Li‐Ion Rechargeable Battery: A Perspective , 2013 .

[39]  Dahn,et al.  Application of ab initio methods for calculations of voltage as a function of composition in electrochemical cells. , 1993, Physical review. B, Condensed matter.

[40]  Arthur F. Voter,et al.  Introduction to the Kinetic Monte Carlo Method , 2007 .

[41]  C. Wolverton,et al.  First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon. , 2012, Journal of the American Chemical Society.

[42]  K. Amine,et al.  Reduction Mechanisms of Ethylene, Propylene, and Vinylethylene Carbonates A Quantum Chemical Study , 2004 .

[43]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[44]  Gus L. W. Hart,et al.  Algorithm for Generating Derivative Structures , 2008 .

[45]  Gerbrand Ceder,et al.  Lithium diffusion mechanisms in layered intercalation compounds , 2001 .

[46]  Gerbrand Ceder,et al.  Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .

[47]  S. Gray,et al.  An ab initio molecular dynamics study of S0 ketene fragmentation , 2001 .

[48]  M. R. Marcelin,et al.  Contribution à l'étude de la cinétique physico-chimique , 1915 .

[49]  J. Dahn,et al.  Calculations of Oxidation Potentials of Redox Shuttle Additives for Li-Ion Cells , 2006 .

[50]  Michael Holzapfel,et al.  Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. , 2006, Journal of the American Chemical Society.

[51]  H. Jónsson,et al.  Nudged elastic band method for finding minimum energy paths of transitions , 1998 .

[52]  B. Alder,et al.  Studies in Molecular Dynamics. VIII. The Transport Coefficients for a Hard-Sphere Fluid , 1970 .

[53]  P. Heitjans,et al.  Diffusion in Condensed Matter , 2005 .

[54]  A. van de Walle,et al.  The Alloy Theoretic Automated Toolkit: A User Guide , 2002 .

[55]  N. Marzari,et al.  Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. , 2006, Physical review letters.

[56]  Gerbrand Ceder,et al.  Electrochemical modeling of intercalation processes with phase field models , 2004 .

[57]  Yi Cui,et al.  25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium‐Ion Batteries , 2013, Advanced materials.

[58]  V. Parker Energetics of electrode reactions. II. The relationship between redox potentials, ionization potentials, electron affinities, and solvation energies of aromatic hydrocarbons , 1976 .

[59]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[60]  Computation of Thermodynamic Oxidation Potentials of Organic Solvents Using Density Functional Theory , 2001 .

[61]  Lei Cheng,et al.  Accelerating Electrolyte Discovery for Energy Storage with High-Throughput Screening. , 2015, The journal of physical chemistry letters.

[62]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[63]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[64]  W. R. McKinnon,et al.  Insertion electrodes I: Atomic and electronic structure of the hosts and their insertion compounds , 1994 .

[65]  K. Leung Electronic Structure Modeling of Electrochemical Reactions at Electrode/Electrolyte Interfaces in Lithium Ion Batteries , 2012, 1304.5976.

[66]  E. P. Lewis In perspective. , 1972, Nursing outlook.

[67]  O. Borodin,et al.  Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes , 2013 .

[68]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[69]  Jian Yu Huang,et al.  In situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode. , 2011 .

[70]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[71]  Tomoyuki Hamada,et al.  Formation and diffusion of vacancy-polaron complex in olivine-type LiMnPO 4 and LiFePO 4 , 2011 .

[72]  Lei Cheng,et al.  The Electrolyte Genome project: A big data approach in battery materials discovery , 2015 .

[73]  Vincent Chevrier,et al.  First Principles Studies of Disordered Lithiated Silicon , 2010 .

[74]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[75]  C A Marianetti,et al.  A first-order Mott transition in LixCoO2 , 2004, Nature materials.

[76]  Anton Van der Ven,et al.  Designing the next generation high capacity battery electrodes , 2014 .

[77]  Shyue Ping Ong,et al.  Electrochemical Windows of Room-Temperature Ionic Liquids from Molecular Dynamics and Density Functional Theory Calculations , 2011 .

[78]  Jean-Marie Tarascon,et al.  On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni) , 2006 .

[79]  Jürg Hutter,et al.  Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods , 2009 .

[80]  Yi Cui,et al.  25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium‐Ion Batteries , 2013, Advanced materials.

[81]  Shyue Ping Ong,et al.  Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds , 2010 .

[82]  Ralf Eggeling,et al.  User guide , 2000 .

[83]  E. Deiss,et al.  First-principles prediction of voltages of lithiated oxides for lithium-ion batteries , 1998 .

[84]  A. van de Walle,et al.  The effect of lattice vibrations on substitutional alloy thermodynamics , 2001, cond-mat/0106490.

[85]  Peter G. Bruce,et al.  Energy storage beyond the horizon: Rechargeable lithium batteries , 2008 .

[86]  Wenqing Zhang,et al.  Structures, Thermodynamics, and Li+ Mobility of Li10GeP2S12: A First-Principles Analysis , 2014 .

[87]  Dong-Hwa Seo,et al.  Ab Initio Study of the Sodium Intercalation and Intermediate Phases in Na0.44MnO2 for Sodium-Ion Battery , 2012 .

[88]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[89]  Gerbrand Ceder,et al.  Predicting Properties from Scratch , 1998, Science.

[90]  Gerbrand Ceder,et al.  First‐Principles Evidence for Stage Ordering in Li x CoO2 , 1998 .

[91]  Anton Van der Ven,et al.  First-principles investigation of phase stability in Li x CoO 2 , 1998 .

[92]  Shyue Ping Ong,et al.  Insights into Diffusion Mechanisms in P2 Layered Oxide Materials by First-Principles Calculations. , 2014 .

[93]  Anton Van der Ven,et al.  Nondilute diffusion from first principles: Li diffusion in Li x TiS 2 , 2008 .

[94]  Anton Van der Ven,et al.  First-principles calculations of lithium ordering and phase stability on Li x NiO 2 , 2002 .

[95]  Boris Kozinsky,et al.  AiiDA: Automated Interactive Infrastructure and Database for Computational Science , 2015, ArXiv.

[96]  R. Forcade,et al.  UNCLE: a code for constructing cluster expansions for arbitrary lattices with minimal user-input , 2009 .

[97]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[98]  Craig A. J. Fisher,et al.  Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. , 2014, Chemical Society Reviews.

[99]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[100]  Kurt Binder,et al.  Monte Carlo Simulation in Statistical Physics , 1992, Graduate Texts in Physics.

[101]  Anton Van der Ven,et al.  Phase diagrams of lithium transition metal oxides: investigations from first principles , 1999 .

[102]  G. Vineyard Frequency factors and isotope effects in solid state rate processes , 1957 .

[103]  P. Mitchell A chemist's guide to density functional theory. Wolfram Koch and Max C. Holthausen. Wiley–VCH, Weinheim, 2000. x + 294 pages. £70 ISBN 3‐527‐29918‐1 , 2000 .

[104]  Yoyo Hinuma,et al.  Lithium Diffusion in Graphitic Carbon , 2010, 1108.0576.

[105]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[106]  V. Pereyra,et al.  Collective surface diffusion: n-fold way kinetic Monte Carlo simulation , 1998 .

[107]  Peter R. Slater,et al.  Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-Type Battery Material , 2005 .

[108]  S. Dai,et al.  Electrochemical windows of sulfone-based electrolytes for high-voltage Li-ion batteries. , 2011, The journal of physical chemistry. B.

[109]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[110]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[111]  R. Kutner Chemical diffusion in the lattice gas of non-interacting particles , 1981 .

[112]  M. Stanley Whittingham,et al.  Materials Challenges Facing Electrical Energy Storage , 2008 .

[113]  D. Langreth,et al.  Beyond the local-density approximation in calculations of ground-state electronic properties , 1983 .

[114]  Anton Van der Ven,et al.  Vacancy mediated substitutional diffusion in binary crystalline solids , 2010 .

[115]  R. Forcade,et al.  Generating derivative structures from multilattices: Algorithm and application to hcp alloys , 2009 .

[116]  Muratahan Aykol,et al.  Thermodynamic Aspects of Cathode Coatings for Lithium‐Ion Batteries , 2014 .

[117]  P. Hohenberg,et al.  Inhomogeneous electron gas , 1964 .

[118]  Gerbrand Ceder,et al.  Ab initio calculation of the intercalation voltage of lithium-transition-metal oxide electrodes for rechargeable batteries , 1997 .

[119]  S. Ong,et al.  Design Principles for Solid‐State Lithium Superionic Conductors , 2015 .

[120]  Shyue Ping Ong,et al.  First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery , 2011, Physical Review B.

[121]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[122]  Gerbrand Ceder,et al.  First‐Principles Prediction of Insertion Potentials in Li‐Mn Oxides for Secondary Li Batteries , 1997 .

[123]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[124]  Christopher M Wolverton,et al.  High‐Throughput Computational Screening of New Li‐Ion Battery Anode Materials , 2013 .

[125]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries. , 2006 .

[126]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[127]  Gerbrand Ceder,et al.  A First-Principles Approach to Studying the Thermal Stability of Oxide Cathode Materials , 2007 .

[128]  Li,et al.  Lattice-gas-model approach to understanding the structures of lithium transition-metal oxides LiMO2. , 1994, Physical review. B, Condensed matter.

[129]  P. Biensan,et al.  Mechanisms Associated with the “Plateau” Observed at High Voltage for the Overlithiated Li1.12(Ni0.425Mn0.425Co0.15)0.88O2 System , 2008 .

[130]  Matteo Cococcioni,et al.  Towards more accurate First Principles prediction of redox potentials in transition-metal compounds with LDA+U , 2004, cond-mat/0406382.

[131]  Gerbrand Ceder,et al.  First-principles theory of ionic diffusion with nondilute carriers , 2001 .

[132]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[133]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[134]  J. Bhattacharya,et al.  Understanding Li diffusion in Li-intercalation compounds. , 2013, Accounts of Chemical Research.

[135]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[136]  Liquan Chen,et al.  Density Functional Investigation on Li2MnO3 , 2012 .

[137]  G. Ceder,et al.  Theoretical capacity achieved in a LiMn0.5Fe0.4Mg0.1BO3 cathode by using topological disorder , 2015 .

[138]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[139]  Gerbrand Ceder,et al.  Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries , 2014, Science.

[140]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[141]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[142]  K. Persson,et al.  Revealing the coupled cation interactions behind the electrochemical profile of Li x Ni 0 . 5 Mn 1 . 5 O 4 , 2012 .

[143]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[144]  Anton Van der Ven,et al.  First-principles calculations of lithium ordering and phase stability on Li x NiO , 2002 .

[145]  Hardy,et al.  Model for the high-temperature oxygen-ordering thermodynamics in YBa2Cu3O6+x: Inclusion of electron spin and charge degrees of freedom. , 1994, Physical review. B, Condensed matter.

[146]  Gerbrand Ceder,et al.  First-principles investigation of phase stability in Li x CoO 2 , 1998 .

[147]  Claude Daul,et al.  Average Voltage, Energy Density, and Specific Energy of Lithium‐Ion Batteries Calculation Based on First Principles , 1997 .

[148]  Christopher M Wolverton,et al.  First-Principles Prediction of Vacancy Order-Disorder and Intercalation Battery Voltages in Li x CoO 2 , 1998 .

[149]  Gerbrand Ceder,et al.  Configurational electronic entropy and the phase diagram of mixed-valence oxides: the case of LixFePO4. , 2006, Physical review letters.