Synthesis and Hydrolysis of Brushite (DCPD): The Role of Ionic Substitution

Brushite (dicalcium phosphate dihydrate, DCPD) is considered one of the possible precursors of the apatitic phase that constitutes the mineral component of bones, and it is often utilized in the pr...

[1]  F. Bosc,et al.  Brushite (Ca,M)HPO4, 2H2O doping with bioactive ions (M = Mg2+, Sr2+, Zn2+, Cu2+, and Ag+): a new path to functional biomaterials? , 2020, Materials Today Chemistry.

[2]  M. Cerruti,et al.  Differences in Mineral Composition and Morphology Between Men and Women in Aortic Valve Calcification. , 2020, Acta biomaterialia.

[3]  M. Vallet‐Regí,et al.  Substituted hydroxyapatite coatings of bone implants. , 2020, Journal of materials chemistry. B.

[4]  V. Uskoković,et al.  Sic Parvis Magna: Manganese-Substituted Tricalcium Phosphate and Its Biophysical Properties. , 2019, ACS biomaterials science & engineering.

[5]  Lijun Wang,et al.  Underlying Role of Brushite in Pathological Mineralization of Hydroxyapatite. , 2019, The journal of physical chemistry. B.

[6]  A. Bigi,et al.  Role of Aspartic and Polyaspartic Acid on the Synthesis and Hydrolysis of Brushite , 2019, Journal of functional biomaterials.

[7]  A. Bigi,et al.  Modulation of Alendronate release from a calcium phosphate bone cement: An in vitro osteoblast‐osteoclast co‐culture study , 2019, International journal of pharmaceutics.

[8]  Teddy Tite,et al.  Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods , 2018, Materials.

[9]  G. Graziani,et al.  A Review on Ionic Substitutions in Hydroxyapatite Thin Films: Towards Complete Biomimetism , 2018, Coatings.

[10]  J. Kolmas,et al.  Ionic Substitutions in Non-Apatitic Calcium Phosphates , 2017, International journal of molecular sciences.

[11]  A. Bigi,et al.  Functionalized Biomimetic Calcium Phosphates for Bone Tissue Repair , 2017, Journal of applied biomaterials & functional materials.

[12]  J. Ratnayake,et al.  Substituted hydroxyapatites for bone regeneration: A review of current trends. , 2017, Journal of biomedical materials research. Part B, Applied biomaterials.

[13]  G. Punte,et al.  The influence of Ni(II) on brushite structure stabilization , 2017 .

[14]  D. Wilson,et al.  Critical review: Injectability of calcium phosphate pastes and cements. , 2017, Acta biomaterialia.

[15]  M. Daudon,et al.  In-lab X-ray fluorescence and diffraction techniques for pathological calcifications , 2016 .

[16]  A. Tas Transformation of Brushite (CaHPO4·2H2O) to Whitlockite (Ca9Mg(HPO4)(PO4)6) or Other CaPs in Physiologically Relevant Solutions , 2016 .

[17]  M. Gazzano,et al.  Ion substitution in biological and synthetic apatites , 2016 .

[18]  S. Dorozhkin Calcium orthophosphates (CaPO4): occurrence and properties , 2015, Progress in Biomaterials.

[19]  D. Uskoković,et al.  Enhanced Osteogenesis of Nanosized Cobalt-substituted Hydroxyapatite , 2015 .

[20]  Monika Šupová,et al.  Substituted hydroxyapatites for biomedical applications: A review , 2015 .

[21]  Chengtie Wu,et al.  Novel Co-akermanite (Ca2CoSi2O7) bioceramics with the activity to stimulate osteogenesis and angiogenesis. , 2015, Journal of materials chemistry. B.

[22]  M. Gelinsky,et al.  Strontium modified calcium phosphate cements - approaches towards targeted stimulation of bone turnover. , 2015, Journal of materials chemistry. B.

[23]  V. Sirotinkin,et al.  Structural changes during the hydrolysis of dicalcium phosphate dihydrate to octacalcium phosphate and hydroxyapatite , 2015, Inorganic Materials.

[24]  S. Weiner,et al.  Infrared Absorption Spectrum of Brushite from First Principles , 2014 .

[25]  F. Tancret,et al.  Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties. , 2014, Acta biomaterialia.

[26]  Shan Bian,et al.  Identification of dicalcium phosphate dihydrate deposited during osteoblast mineralization in vitro. , 2014, Journal of inorganic biochemistry.

[27]  J. Rehr,et al.  The status of strontium in biological apatites: an XANES/EXAFS investigation. , 2011, Journal of synchrotron radiation.

[28]  V. Rajendran,et al.  Enhancement of antimicrobial and long-term biostability of the zinc-incorporated hydroxyapatite coated 316L stainless steel implant for biomedical application , 2013 .

[29]  Mohammad Hamdan Alkhraisat,et al.  Magnesium substitution in brushite cements. , 2013, Materials science & engineering. C, Materials for biological applications.

[30]  Serena M Best,et al.  Substituted hydroxyapatites for bone repair , 2012, Journal of Materials Science: Materials in Medicine.

[31]  X. Guo,et al.  The cross-talk between osteoclasts and osteoblasts in response to strontium treatment: involvement of osteoprotegerin. , 2011, Bone.

[32]  P. Kumta,et al.  Chemical synthesis and stabilization of magnesium substituted brushite , 2010 .

[33]  M. Gazzano,et al.  Collapsed Octacalcium Phosphate Stabilized by Ionic Substitutions , 2010 .

[34]  G. H. Nancollas,et al.  Calcium orthophosphates: crystallization and dissolution. , 2008, Chemical reviews.

[35]  Ľ. Medvecký,et al.  Influence of manganese on stability and particle growth of hydroxyapatite in simulated body fluid , 2006 .

[36]  F. Cuisinier,et al.  Phase Relations Between β‐Tricalcium Phosphate and Hydroxyapatite with Manganese(II): Structural and Spectroscopic Properties , 2006 .

[37]  M. Francis,et al.  Hydroxyapatite formation from a hydrated calcium monohydrogen phosphate precursor , 1970, Calcified Tissue Research.

[38]  S. Bhaduri,et al.  Chemical Processing of CaHPO4·2H2O: , 2004 .

[39]  N. Ichinose,et al.  Zinc containing hydroxyapatite ceramics to promote osteoblastic cell activity , 2004 .

[40]  J. Werckmann,et al.  Manganese in Precipitated Hydroxyapatites , 2003 .

[41]  Matthias Epple,et al.  Biological and medical significance of calcium phosphates. , 2002, Angewandte Chemie.

[42]  C. Christiansen,et al.  Incorporation and distribution of strontium in bone. , 2001, Bone.

[43]  Legeros Rz Formation and transformation of calcium phosphates: relevance to vascular calcification. , 2001 .

[44]  H. Füredi-Milhofer,et al.  Factors Influencing Additive Interactions with Calcium Hydrogenphosphate Dihydrate Crystals , 2000 .

[45]  P. Brown,et al.  Hydrolysis of dicalcium phosphate dihydrate to hydroxyapatite , 1998, Journal of materials science. Materials in medicine.

[46]  Masayoshi Yamaguchi,et al.  Role of zinc in bone formation and bone resorption , 1998 .

[47]  J. Gavarri,et al.  Study of Protonic Mobility in CaHPO4·2H2O (Brushite) and CaHPO4(Monetite) by Infrared Spectroscopy and Neutron Scattering☆ , 1997 .

[48]  W. E. Brown,et al.  Structures of Biological Minerals , 1982 .

[49]  B. O. Fowler Infrared studies of apatites. II. Preparation of normal and isotopically substituted calcium, strontium, and barium hydroxyapatites and spectra-structure-composition correlations , 1974 .

[50]  D. W. Jones,et al.  Crystal structure of brushite, calcium hydrogen orthophosphate dihydrate: a neutron-diffraction investigation , 1971 .