At the frontiers of high-resolution hard-x-ray microscopy: an international programme

We review the recent progress achieved by our international collaboration on novel imaging techniques based on high-brightness and highly coherent synchrotron sources. After outlining the background, we will discuss the technical progress of recent years. Then, we will exemplify the applications with a number of cases in materials science and life sciences, in particular neurobiology. New results on metal electrodeposition will be used to practically illustrate the impact of the techniques in this important technological area and in general its potential for materials research. Finally, we will briefly comment on the foreseeable technical improvements and on their positive consequences.

[1]  C. Jacobsen,et al.  Soft x-ray microscopy. , 1999, Trends in cell biology.

[2]  A. Dinia,et al.  NUCLEATION, GROWTH, AND MORPHOLOGICAL PROPERTIES OF ELECTRODEPOSITED NICKEL FILMS FROM DIFFERENT BATHS , 2008 .

[3]  Nathalie Bouet,et al.  Hard x-ray nanofocusing by multilayer Laue lenses , 2014 .

[4]  J. Miao,et al.  Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Erik Lefebvre,et al.  Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator , 2011 .

[6]  G. Zangari,et al.  Electrochemical Nucleation and Growth of Copper from Acidic Sulfate Electrolytes on n-Si ( 001 ) Effect of Chloride Ions , 2007 .

[7]  S. Rehbein,et al.  Towards high diffraction efficiency zone plates for X-ray microscopy , 2010 .

[8]  Joan Vila-Comamala,et al.  High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating , 2011, Journal of synchrotron radiation.

[9]  C. H. Chen,et al.  Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating. , 2008, Journal of synchrotron radiation.

[10]  J. Kirz,et al.  Biological imaging by soft x-ray diffraction microscopy , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Janos Kirz,et al.  Phase zone plates for x rays and the extreme uv , 1974 .

[13]  F. Ross,et al.  The morphology and nucleation kinetics of copper islands during electrodeposition , 2006 .

[14]  Michael Feser,et al.  Nanofabrication of high aspect ratio 24nm x-ray zone plates for x-ray imaging applications , 2007 .

[15]  F. Pfeiffer,et al.  Quantitative biological imaging by ptychographic x-ray diffraction microscopy , 2009, Proceedings of the National Academy of Sciences.

[16]  Gerry McDermott,et al.  Quantitative 3-D imaging of eukaryotic cells using soft X-ray tomography. , 2008, Journal of structural biology.

[17]  Giorgio Margaritondo,et al.  Hard-X-ray Zone Plates: Recent Progress , 2012, Materials.

[18]  D. Nilsson,et al.  Platinum zone plates for hard X-ray applications , 2011 .

[19]  Richard J. Fitzgerald,et al.  Phase‐Sensitive X‐Ray Imaging , 2000 .

[20]  S. Rehbein,et al.  Multilayer Fresnel zone plate for soft X-ray microscopy resolves sub-39nm structures. , 2011, Ultramicroscopy.

[21]  Kazuhisa Nakajima,et al.  Towards a table-top free-electron laser , 2008 .

[22]  Gerry McDermott,et al.  Soft X-ray tomography and cryogenic light microscopy: the cool combination in cellular imaging. , 2009, Trends in cell biology.

[23]  Q. Shen,et al.  Hard x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution. , 2008 .

[24]  S. Wilkins,et al.  Phase-contrast imaging using polychromatic hard X-rays , 1996, Nature.

[25]  Panayotis C. Andricacos,et al.  Damascene copper electroplating for chip interconnections , 1998, IBM J. Res. Dev..

[26]  Y. Chu,et al.  Dynamical growth behavior of copper clusters during electrodeposition , 2010 .

[27]  A. West,et al.  Influence of Additives on Nucleation and Growth of Copper on n-Si(111) from Acidic Sulfate Solutions , 2002 .

[28]  K. Nugent,et al.  Unique phase recovery for nonperiodic objects. , 2003, Physical review letters.

[29]  B. Scharifker,et al.  Theoretical and experimental studies of multiple nucleation , 1983 .

[30]  F. Ross,et al.  In situ study of the growth kinetics of individual island electrodeposition of copper. , 2006, The journal of physical chemistry. B.

[31]  G. Margaritondo,et al.  Synchrotron light in medical and materials science radiology , 2004 .

[32]  Qun Shen,et al.  Full-field hard x-ray microscopy below 30 nm: a challenging nanofabrication achievement , 2008, Nanotechnology.

[33]  T. Liese,et al.  Development of laser deposited multilayer zone plate structures for soft X-ray radiation , 2011 .

[34]  B. Hwang,et al.  Nucleation and growth mechanism of electroformation of polypyrrole on a heat-treated gold/highly oriented pyrolytic graphite , 2001 .

[35]  C. Larabell,et al.  High resolution protein localization using soft X‐ray microscopy , 2001, Journal of microscopy.

[36]  C. David,et al.  X-ray submicrometer phase contrast imaging with a Fresnel zone plate and a two dimensional grating interferometer. , 2012, Optics letters.

[37]  P. Withers X-ray nanotomography , 2007 .

[38]  Burkhard Kaulich,et al.  X-ray lithography fabrication of a zone plate for X-rays in the range from 15 to 30 keV , 2002 .

[39]  Emma L. Smith,et al.  Time resolved in situ liquid atomic force microscopy and simultaneous acoustic impedance electrochemical quartz crystal microbalance measurements: a study of Zn deposition. , 2009, Analytical chemistry.

[40]  Giorgio Margaritondo,et al.  Gold nanoparticles as high-resolution X-ray imaging contrast agents for the analysis of tumor-related micro-vasculature , 2012, Journal of Nanobiotechnology.

[41]  T. Warwick,et al.  Principles and Applications of Zone Plate X-Ray Microscopes , 2007 .

[42]  C. H. Chen,et al.  Hydrogen Bubbles and the Growth Morphology of Ramified Zinc by Electrodeposition , 2008 .

[43]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[44]  Peter C Searson,et al.  Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. , 2006, Nano letters.

[45]  Wah-Keat Lee,et al.  Full-field microimaging with 8 keV X-rays achieves a spatial resolutions better than 20 nm. , 2011, Optics express.

[46]  Akihisa Takeuchi,et al.  Fabrication and Performance Test of Fresnel Zone Plate with 35 nm Outermost Zone Width in Hard X-Ray Region , 2010 .

[47]  H. Sinn,et al.  Nanofocusing of hard X-ray free electron laser pulses using diamond based Fresnel zone plates , 2011, Scientific reports.

[48]  I. González,et al.  Silver Electrocrystallization on Vitreous Carbon from Ammonium Hydroxide Solutions , 1996 .

[49]  R. Denoyel,et al.  Influence of additives on Cu electrodeposition mechanisms in acid solution: direct current study supported by non-electrochemical measurements , 2002 .

[50]  William A. Barletta,et al.  Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet , 2012, Nature Photonics.

[51]  D. Ratner,et al.  First lasing and operation of an ångstrom-wavelength free-electron laser , 2010 .

[52]  Eberhard Spiller,et al.  Soft-x-ray optics , 1994, Optical Society of America Annual Meeting.

[53]  Keng S. Liang,et al.  Imaging cells and sub-cellular structures with ultrahigh resolution full-field X-ray microscopy. , 2013, Biotechnology advances.

[54]  B. Pešić,et al.  Electrodeposition of copper: the nucleation mechanisms , 2002 .

[55]  Atsushi Momose,et al.  Phase–contrast X–ray computed tomography for observing biological soft tissues , 1996, Nature Medicine.

[56]  Stefan Eisebitt,et al.  X-ray holographic microscopy with zone plates applied to biological samples in the water window using 3rd harmonic radiation from the free-electron laser FLASH. , 2011, Optics express.

[57]  G. Margaritondo,et al.  A simplified description of X-ray free-electron lasers , 2011, Journal of synchrotron radiation.

[58]  W. Yun,et al.  30 nm resolution x-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope , 2006 .

[59]  C. Jacobsen,et al.  Zernike phase contrast in scanning microscopy with X-rays. , 2010, Nature physics.

[60]  Thermal stability of tungsten zone plates for focusing hard x-ray free-electron laser radiation , 2012 .

[61]  Nathalie Bouet,et al.  Nanoresolution radiology of neurons , 2012 .

[62]  L. Ocola,et al.  Nanofabrication of x-ray zone plates using ultrananocrystalline diamond molds and electroforming , 2010 .

[63]  H. Hertz,et al.  Process development for improved soft X-ray zone plates , 2010 .

[64]  I. Lin,et al.  E-beam lithography and electrodeposition fabrication of thick nanostructured devices , 2007 .

[65]  S. Rehbein,et al.  Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders of diffraction. , 2009, Physical review letters.

[66]  M. Bicer,et al.  Electrodeposition and growth mechanism of SnSe thin films , 2011 .

[67]  M. L. Le Gros,et al.  X-ray tomography generates 3-D reconstructions of the yeast, saccharomyces cerevisiae, at 60-nm resolution. , 2003, Molecular biology of the cell.

[68]  Wah-Keat Lee,et al.  Hard x-ray Zernike microscopy reaches 30 nm resolution. , 2011, Optics letters.

[69]  S. Rehbein,et al.  Characterization of the resolving power and contrast transfer function of a transmission X-ray microscope with partially coherent illumination. , 2012, Optics express.

[70]  C. H. Chen,et al.  Electrochemistry: Building on bubbles in metal electrodeposition , 2002, Nature.

[71]  Fabrication of Fresnel zone plates with 25nm zone width using extreme ultraviolet holography , 2010 .

[72]  B. Hwang,et al.  Nucleation and growth mechanism for the electropolymerization of aniline on highly oriented pyrolytic graphite at higher potentials , 2001 .

[73]  Tetsuya Yuasa,et al.  X-ray refraction-contrast computed tomography images using dark-field imaging optics , 2010 .

[74]  A. Gewirth,et al.  Influence of Additives on Copper Electrodeposition on Physical Vapor Deposited (PVD) Copper Substrates , 2003 .

[75]  H. Takano,et al.  Circular multilayer zone plate for high-energy x-ray nano-imaging. , 2012, The Review of scientific instruments.

[76]  Gerry McDermott,et al.  X-ray tomography of whole cells. , 2005, Current opinion in structural biology.

[77]  E. Anderson,et al.  Soft X-ray microscopy at a spatial resolution better than 15 nm , 2005, Nature.

[78]  Anatoly Snigirev,et al.  Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling , 2013, Journal of synchrotron radiation.

[79]  F. Favier,et al.  Size-selective electrodeposition of meso-scale metal particles: a general method , 2001 .

[80]  W. Chao,et al.  Real space soft x-ray imaging at 10 nm spatial resolution. , 2012, Optics express.

[81]  A. Momose,et al.  Hard-X-ray Phase-Difference Microscopy with a Low-Brilliance Laboratory X-ray Source , 2011 .

[82]  Y. Chu,et al.  High-resolution hard-x-ray microscopy using second-order zone-plate diffraction , 2011 .

[83]  W. Ludwig,et al.  X-ray microscopy in Zernike phase contrast mode at 4 keV photon energy with 60 nm resolution , 2003 .

[84]  Tandem-Phase Zone-Plate Optics for High-Energy X-ray Focusing , 2011 .

[85]  Hanfei Yan,et al.  Ion beam lithography for Fresnel zone plates in X-ray microscopy. , 2013, Optics express.

[86]  S. Wilkins,et al.  Phase-contrast imaging of weakly absorbing materials using hard X-rays , 1995, Nature.