Determination of masses of the central black holes in NGC 524 and 2549 using laser guide star adaptive optics

We present observations of early-type galaxies NGC 524 and 2549 with laser guide star adaptive optics (LGS AO) obtained at GEMINI North telescope using the Near-infrared Integral Field Spectrograph (NIFS) integral field unit (IFU) in the K band. The purpose of these observations is to determine high spatial resolution stellar kinematics within the nuclei of these galaxies and, in combination with previously obtained large-scale observations with the SAURON IFU, to determine the masses (M.) of the supermassive black holes (SMBH). The targeted galaxies were chosen to have central light profiles showing a core (NGC 524) and a cusp (NGC 2549), to probe the feasibility of using the galaxy centre as the natural guide source required for LGS AO. We employ an innovative technique where the focus compensation due to the changing distance to the sodium layer is made 'open loop', allowing the extended galaxy nucleus to be used only for tip-tilt correction. The data have spatial resolution of 0.23 and 0.17 arcsec full-width at half maximum (FWHM), where at least ∼40 per cent of flux comes within 0.2, showing that high quality LGS AO observations of these objects are possible. The achieved signal-to-noise ratio (S/N ∼ 50) is sufficiently high to reliably determine the shape of the line-of-sight velocity distribution. We construct axisymmetric three-integral dynamical models which are constrained with both the NIFS and SAURON data. The best-fitting models yield M. = (8.3 +2.7 -1.3 ) × 10 8 M ⊙ and (M / L) I = 5.8 ± 0.4 for NGC 524 and M. = (1.4 +0.2 -1.3 ) × 10 7 M ⊙ and (M/L) R = 4.7 ± 0.2 for NGC 2549 (all errors are at the 3σ level). We demonstrate that the wide-field SAURON data play a crucial role in the M/L determination increasing the accuracy of M/L by a factor of at least 5, and constraining the upper limits on black hole masses. The NIFS data are crucial in constraining the lower limits of M. and in combination with the large-scale data reducing the uncertainty by a factor of 2 or more. We find that the orbital structure of NGC 524 shows significant tangential anisotropy, while at larger radii both galaxies are consistent with having almost perfectly oblate velocity ellipsoids. Tangential anisotropy in NGC 524 coincides with the size of SMBH sphere of influence and the core region in the light profile. This agrees with predictions from numerical simulations where core profiles are the result of SMBH binaries evacuating the centre nuclear regions following a galaxy merger. However, being a disc dominated fast rotating galaxy, NGC 524 has probably undergone through a more complex evolution. We test the accuracy to which M. can be measured using seeings obtained from typical LGS AO observations, and conclude that for a typical conditions and M. the expected uncertainty is of the order of 50 per cent.

[1]  K. Menten,et al.  A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way , 2002, Nature.

[2]  Tod R. Lauer,et al.  The centers of early-type galaxies with HST. IV. Central parameter relations , 1996, astro-ph/9610055.

[3]  Remko Stuik,et al.  Generalized sky coverage for adaptive optics and interferometry , 2004, SPIE Astronomical Telescopes + Instrumentation.

[4]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[5]  M. Cappellari,et al.  Dynamical modelling of stars and gas in NGC 2974: determination of mass-to-light ratio, inclination and orbital structure using the Schwarzschild method , 2004, astro-ph/0412186.

[6]  M. Franx,et al.  Structure and dynamics of elliptical galaxies , 1987 .

[7]  Hans-Walter Rix,et al.  Dynamical Modeling of Velocity Profiles: The Dark Halo around the Elliptical Galaxy NGC 2434 , 1997 .

[8]  G. Rieke,et al.  Correction of the atmospheric transmission in infrared spectroscopy , 1996 .

[9]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[10]  Armin Rest,et al.  Galaxy cores as relics of black hole mergers , 2002 .

[11]  The SAURON project—V. Integral-field emission-line kinematics of 48 elliptical and lenticular galaxies , 2004, astro-ph/0404034.

[12]  H. Rix,et al.  The mass of the black hole in Centaurus A from SINFONI AO-assisted integral-field observations of stellar kinematics , 2008, 0812.1000.

[13]  Florian Kerber,et al.  The 2007 Eso Instrument Calibration Workshop , 2009 .

[14]  Ortwin Gerhard,et al.  Line-of-sight velocity profiles in spherical galaxies: breaking the degeneracy between anisotropy and mass , 1993 .

[15]  T. Lauer,et al.  DISSIPATION AND EXTRA LIGHT IN GALACTIC NUCLEI. III. “CORE” ELLIPTICALS AND “MISSING” LIGHT , 2008, 0806.2325.

[16]  Brent Ellerbroek,et al.  Advances in Adaptive Optics II , 2006 .

[17]  Paul T. P. Ho,et al.  A size of ∼1 au for the radio source Sgr A* at the centre of the Milky Way , 2005, Nature.

[18]  P. T. de Zeeuw,et al.  The Central Parsecs of Centaurus A: High-excitation Gas, a Molecular Disk, and the Mass of the Black Hole , 2007, 0709.1877.

[19]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[20]  The black hole in NGC 3379: a comparison of gas and stellar dynamical mass measurements with HST and integral‐field data★ , 2006, astro-ph/0605479.

[21]  S. Tremaine,et al.  Maximum-entropy models of galaxies , 1988 .

[22]  U. Austin,et al.  The supermassive black hole of Fornax A , 2008, 0809.0696.

[23]  Dense Stellar Cores in Merger Remnants , 1994, astro-ph/9409090.

[24]  Axisymmetric Dynamical Models of the Central Regions of Galaxies , 2002, astro-ph/0209483.

[25]  R. Davies AO assisted spectroscopy with SINFONI: PSF, background and interpolation , 2007, astro-ph/0703044.

[26]  M. Milosavljevic,et al.  Formation of Galactic Nuclei , 2001, astro-ph/0103350.

[27]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[28]  Hans-Walter Rix,et al.  On the Black Hole Mass-Bulge Mass Relation , 2004, astro-ph/0402376.

[29]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[30]  R. Bender,et al.  The supermassive black hole in NGC 4486a detected with SINFONI at the Very Large Telescope , 2007, 0705.1758.

[31]  Harald Kuntschner,et al.  The SAURON project – IX. A kinematic classification for early‐type galaxies , 2007, astro-ph/0703531.

[32]  M. Franx The projection of galaxy models with a Stäckel potential , 1988 .

[33]  D. P. Woody,et al.  Structure of Sagittarius A* at 86 GHz using VLBI Closure Quantities , 2001 .

[34]  N. Hubin,et al.  Laser guide star for 3.6- and 8-m telescopes: performance and astrophysical implications , 1997, astro-ph/9710130.

[35]  Ralf Bender,et al.  The Centers of Early-Type Galaxies with Hubble Space Telescope. VI. Bimodal Central Surface Brightness Profiles , 2006, astro-ph/0609762.

[36]  A. Bolton,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SLOAN LENS ACS SURVEY. VII. ELLIPTICAL GALAXY SCALING LAWS FROM DIRECT OBSERVATIONAL MASS MEASUREMENTS 1 , 2022 .

[37]  G. Rybicki Deprojection of Galaxies: How much can be Learned? , 1987 .

[38]  R. Davies,et al.  The SAURON project - IV. The mass-to-light ratio, the virial mass estimator and the Fundamental Plane of elliptical and lenticular galaxies , 2005, astro-ph/0505042.

[39]  M. Valluri,et al.  The Low End of the Supermassive Black Hole Mass Function: Constraining the Mass of a Nuclear Black Hole in NGC 205 via Stellar Kinematics , 2005, astro-ph/0502493.

[40]  R. Davies,et al.  The central kinematics of NGC 1399 measured with 14 pc resolution , 2005, astro-ph/0510278.

[41]  Carnegie-Mellon,et al.  A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids , 2005, astro-ph/0506398.

[42]  Laura Ferrarese David Merritt A Fundamental Relation Between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[43]  Eric Emsellem,et al.  Parametric Recovery of Line‐of‐Sight Velocity Distributions from Absorption‐Line Spectra of Galaxies via Penalized Likelihood , 2003, astro-ph/0312201.

[44]  T. Statler Bringing the cross-correlation method up to date , 1995 .

[45]  H. Kuntschner,et al.  A New Approach to the Study of Stellar Populations in Early-Type Galaxies: K-Band Spectral Indices and an Application to the Fornax Cluster , 2007, 0710.5529.

[46]  Michele Cappellari,et al.  Adaptive spatial binning of integral-field spectroscopic data using Voronoi tessellations , 2003, astro-ph/0302262.

[47]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[48]  The nuclear orbital distribution in galaxies as a fossil record of black hole formation from integral-field spectroscopy , 2004, astro-ph/0412433.

[49]  L. Ferrarese Beyond the Bulge: A Fundamental Relation between Supermassive Black Holes and Dark Matter Halos , 2002, astro-ph/0203469.

[50]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[51]  T. Heckman,et al.  The Black Hole Mass of NGC 4151: Comparison of Reverberation Mapping and Stellar Dynamical Measurements , 2007, 0708.1196.

[52]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[53]  The Charge‐Transfer Efficiency and Calibration of WFPC2 , 2000, astro-ph/0006237.

[54]  D. Richstone,et al.  Host Galaxy Bulge Predictors of Supermassive Black Hole Mass , 2007, 0705.1165.

[55]  Dwingeloo,et al.  Jet-lag in Sagittarius A*: what size and timing measurements tell us about the central black hole in the Milky Way , 2009, 0901.3723.

[56]  Astrophysics,et al.  A QUINTET OF BLACK HOLE MASS DETERMINATIONS , 2009, 0901.4162.

[57]  D. Merritt,et al.  Long-Term Evolution of Massive Black Hole Binaries. III. Binary Evolution in Collisional Nuclei , 2007, 0705.2745.

[58]  The SAURON project – VIII. OASIS/CFHT integral-field spectroscopy of elliptical and lenticular galaxy centres , 2006, astro-ph/0609452.

[59]  M. Franx,et al.  A new method for the identification of non-Gaussian line profiles in elliptical galaxies , 1993 .

[60]  H. Rix,et al.  VLT Diffraction-Limited Imaging and Spectroscopy in the NIR: Weighing the Black Hole in Centaurus A with NACO , 2005, astro-ph/0507094.

[61]  M. Cappellari,et al.  The SAURON project – XII. Kinematic substructures in early-type galaxies: evidence for discs in fast rotators , 2008, 0807.1505.

[62]  Rogemar A. Riffel,et al.  The Gemini library of late spectral templates for stellar kinematics analysis in the CO 2.3 mµ region , 2008 .

[63]  R. Bender,et al.  Line-of-sight velocity distributions of elliptical galaxies , 1994 .

[64]  H Germany,et al.  A Method of Correcting Near‐Infrared Spectra for Telluric Absorption , 2002, astro-ph/0211255.

[65]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[66]  M. S. Roberts Galactic astronomy. , 1981, Science.

[67]  R. Bender,et al.  CORRELATIONS BETWEEN SUPERMASSIVE BLACK HOLES, VELOCITY DISPERSIONS, AND MASS DEFICITS IN ELLIPTICAL GALAXIES WITH CORES , 2009, 0901.3778.

[68]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[69]  S. Rabien,et al.  Laser Guide Star Adaptive Optics without Tip-tilt , 2008, 0801.3738.

[70]  M. Cappellari,et al.  A SAURON study of M32: measuring the intrinsic flattening and the central black hole mass , 2002 .

[71]  Gerard A. Luppino,et al.  The SBF Survey of Galaxy Distances. IV. SBF Magnitudes, Colors, and Distances , 2000, astro-ph/0011223.

[72]  Michele Cappellari,et al.  Measuring the inclination and mass-to-light ratio of axisymmetric galaxies via anisotropic Jeans models of stellar kinematics , 2008, 0806.0042.

[73]  P. T. de Zeeuw,et al.  Improved Evidence for a Black Hole in M32 from HST/FOS Spectra. II. Axisymmetric Dynamical Models , 1997, astro-ph/9705081.

[74]  H. Ford,et al.  Hubble Space Telescope photometry of the central regions of Virgo cluster elliptical galaxies. 3: Brightness profiles , 1994 .

[75]  J. P. Huchra,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[76]  E. Emsellem,et al.  The SAURON project – X. The orbital anisotropy of elliptical and lenticular galaxies: revisiting the (V/σ, ɛ) diagram with integral‐field stellar kinematics , 2007, astro-ph/0703533.

[77]  Seattle,et al.  nmagic: a fast parallel implementation of a χ2-made-to-measure algorithm for modelling observational data , 2007, astro-ph/0701582.

[78]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[79]  Caltech,et al.  Long-Term Evolution of Massive Black Hole Binaries , 2002, astro-ph/0212459.

[80]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[81]  T. Ebisuzaki,et al.  Merging of Galaxies with Central Black Holes. I. Hierarchical Mergings of Equal-Mass Galaxies , 1996 .

[82]  R. V. D. Bosch,et al.  Recovery of the internal orbital structure of galaxies , 2007, 0712.0309.

[83]  Self-similar Models for the Mass Profiles of Early-Type Lens Galaxies , 2003, astro-ph/0306096.

[84]  Martin T. Dove Structure and Dynamics , 2003 .

[85]  Laura Ferrarese,et al.  Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research , 2004, astro-ph/0411247.

[86]  L. Wallace,et al.  Medium-Resolution Spectra of Normal Stars in the K Band , 1997 .

[87]  A. J. Cenarro,et al.  Medium-resolution isaac newton telescope library of empirical spectra , 2006 .

[88]  Peter Erwin,et al.  A correlation between galaxy light concentration and supermassive black hole mass , 2001 .

[89]  R. Saglia,et al.  Dynamical Family Properties and Dark Halo Scaling Relations of Giant Elliptical Galaxies , 2000, astro-ph/0012381.

[90]  Ralf Bender,et al.  The Demography of massive dark objects in galaxy centers , 1997, astro-ph/9708072.

[91]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[92]  Ralf Bender,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE M–σ AND M–L RELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER , 2008 .

[93]  A. Marconi,et al.  The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity , 2003, astro-ph/0304274.

[94]  E. Emsellem,et al.  The SAURON project - VI. Line strength maps of 48 elliptical and lenticular galaxies , 2006, astro-ph/0602192.

[95]  Institute for Advanced Study,et al.  Triaxial orbit based galaxy models with an application to the (apparent) decoupled core galaxy NGC 4365 , 2007, 0712.0113.

[96]  G. Neugebauer,et al.  The First Measurement of Spectral Lines in a Short-Period Star Bound to the Galaxy’s Central Black Hole: A Paradox of Youth , 2003 .

[97]  L. Wallace,et al.  An atlas of the solar spectrum in the infrared from 1850 to 9000 cm-1 (1.1 to 5.4 μm), revised , 2003 .

[98]  Atsunori Yonehara,et al.  Publications of the Astronomical Society of Australia , 2000 .

[99]  E. Emsellem,et al.  Axisymmetric dynamical models for SAURON and OASIS observations of NGC 3377 , 2004 .

[100]  Garth D. Illingworth,et al.  Hubble's Science Legacy: Future Optical/Ultraviolet Astronomy from Space , 2003 .

[101]  R. Bender,et al.  Dynamical modelling of luminous and dark matter in 17 Coma early-type galaxies , 2007, 0709.0691.

[102]  M. Schwarzschild,et al.  A numerical model for a triaxial stellar system in dynamical equilibrium , 1979 .

[103]  R. Abuter,et al.  The Star-forming Torus and Stellar Dynamical Black Hole Mass in the Seyfert 1 Nucleus of NGC 3227* , 2006 .

[104]  M. Cappellari Efficient multi-Gaussian expansion of galaxies , 2002, astro-ph/0201430.

[105]  Ralf Bender,et al.  STRUCTURE AND FORMATION OF ELLIPTICAL AND SPHEROIDAL GALAXIES , 2008, 0810.1681.

[106]  A. Graham Populating the Galaxy Velocity Dispersion: Supermassive Black Hole Mass Diagram, A Catalogue of (M bh, σ) Values , 2008, Publications of the Astronomical Society of Australia.

[107]  R. Davies,et al.  The SAURON project – I. The panoramic integral-field spectrograph , 2001, astro-ph/0103451.

[108]  H. Ford,et al.  WFPC2 Images of the Central Regions of Early-Type Galaxies. I. The Data , 2001, astro-ph/0102286.

[109]  A. Bolton,et al.  The Sloan Lens ACS Survey. III. The Structure and Formation of Early-Type Galaxies and Their Evolution since z ≈ 1 , 2006, astro-ph/0601628.

[110]  R. Genzel,et al.  MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2008, 0810.4674.

[111]  S. Tremaine,et al.  A STELLAR DYNAMICAL MEASUREMENT OF THE BLACK HOLE MASS IN THE MASER GALAXY NGC 4258 , 2008, 0808.4001.

[112]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[113]  Lars Hernquist,et al.  The dynamical evolution of massive black hole binaries — II. Self-consistent N-body integrations , 1997 .

[114]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .