Epitaxial graphene: a new material

Graphene, a two‐dimensional sheet of sp2‐bonded carbon arranged in a honeycomb lattice, is not only the building block of fullerenes, carbon nano tubes (CNTs) and graphite, it also has interesting properties, which have caused a flood of activities in the past few years. The possibility to grow graphitic films with thicknesses down to a single graphene layer epitaxially on SiC{0001} surfaces is promising for future applications. The two‐dimensional nature of epitaxial graphene films make them ideal objects for surface science techniques such as photoelectron spectroscopy, low‐energy electron diffraction, and scanning probe microscopy. The present article summarizes results from recent photoemission studies covering a variety of aspects such as the growth of epitaxial graphene and few layer graphene, the electronic and structural properties of the interface to the SiC substrate, and the electronic structure of the epitaxial graphene stacks. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  F. Varchon,et al.  Graphene on the C-terminated SiC (0001̄) surface: An ab initio study , 2009, 0902.1638.

[2]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[3]  P. Mallet,et al.  Graphene-substrate interaction on 6H-SiC(0001̄) : A scanning tunneling microscopy study , 2008 .

[4]  E. Vescovo,et al.  Electronic and magnetic properties of quasifreestanding graphene on Ni. , 2008, Physical review letters.

[5]  Xu Du,et al.  Approaching ballistic transport in suspended graphene. , 2008, Nature nanotechnology.

[6]  K. Emtsev,et al.  Effect of an intermediate graphite layer on the electronic properties of metal/SiC contacts , 2008 .

[7]  Alexander Mattausch,et al.  Density functional study of graphene overlayers on SiC , 2008 .

[8]  Ralf Graupner,et al.  Raman spectra of epitaxial graphene on SiC(0001) , 2008 .

[9]  H. B. Weber,et al.  Atomic and electronic structure of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy , 2008 .

[10]  F. Varchon,et al.  Rotational disorder in few-layer graphene films on6H−SiC(000−1): A scanning tunneling microscopy study , 2008 .

[11]  K. Emtsev,et al.  Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study , 2008 .

[12]  T. Ohta,et al.  Origin of the energy bandgap in epitaxial graphene. , 2008, Nature materials.

[13]  A. V. Fedorov,et al.  Origin of the energy bandgap in epitaxial graphene , 2008, 0804.1818.

[14]  C. Berger,et al.  Why multilayer graphene on 4H-SiC(0001[over ]) behaves like a single sheet of graphene. , 2008, Physical review letters.

[15]  X. F. Fan,et al.  Raman spectroscopy of epitaxial graphene on a SiC substrate , 2008 .

[16]  E. H. Hwang,et al.  Quasiparticle spectral function in doped graphene: Electron-electron interaction effects in ARPES , 2008 .

[17]  R. Asgari,et al.  Plasmons and the spectral function of graphene , 2008 .

[18]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[19]  A. V. Fedorov,et al.  Departure from the conical dispersion in epitaxial graphene , 2008, 0801.3862.

[20]  T. Yokoyama Controllable spin transport in ferromagnetic graphene junctions , 2008, 0801.1552.

[21]  U. Rüdiger,et al.  Rashba effect in the graphene/ni(111) system. , 2007, Physical review letters.

[22]  A. Bostwick,et al.  Characterization of graphene through anisotropy of constant-energy maps in angle-resolved photoemission , 2007, 0711.1129.

[23]  K. Novoselov,et al.  Giant intrinsic carrier mobilities in graphene and its bilayer. , 2007, Physical review letters.

[24]  F. Rana,et al.  Graphene Terahertz Plasmon Oscillators , 2007, IEEE Transactions on Nanotechnology.

[25]  T. Ohta,et al.  Morphology of graphene thin film growth on SiC(0001) , 2007, 0710.0877.

[26]  M. Nagase,et al.  Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons , 2007, 0710.0469.

[27]  L. Vandersypen,et al.  Gate-induced insulating state in bilayer graphene devices. , 2007, Nature materials.

[28]  K. Novoselov,et al.  Molecular doping of graphene. , 2007, Nano letters.

[29]  U. Starke,et al.  Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces , 2007 .

[30]  M. Potemski,et al.  Few-layer graphene on SiC, pyrolitic graphite, and graphene: A Raman scattering study , 2007, 0709.2538.

[31]  S. Latil,et al.  Massless fermions in multilayer graphitic systems with misoriented layers: Ab initio calculations an , 2007, 0709.2315.

[32]  A. V. Fedorov,et al.  Substrate-induced bandgap opening in epitaxial graphene. , 2007, Nature materials.

[33]  A. Bostwick,et al.  Band structure and many body effects in graphene , 2007 .

[34]  Alexander Mattausch,et al.  Ab Initio Study of the Structural and Electronic Properties of the Graphene/SiC{0001} Interface , 2007 .

[35]  J. Crain,et al.  Scattering and Interference in Epitaxial Graphene , 2007, Science.

[36]  T. Ohta,et al.  Renormalization of graphene bands by many-body interactions , 2007 .

[37]  T. Ohta,et al.  Scanning tunneling spectroscopy of inhomogeneous electronic structure in monolayer and bilayer graphene on SiC , 2007, 0706.3764.

[38]  C. Berger,et al.  Magnetotransport in high mobility epitaxial graphene , 2007 .

[39]  Taisuke Ohta,et al.  Symmetry breaking in few layer graphene films , 2007, 0705.3705.

[40]  Alexander Mattausch,et al.  Ab initio study of graphene on SiC. , 2007, Physical review letters.

[41]  V. Fal’ko Graphene: Quantum information on chicken wire , 2007 .

[42]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[43]  Structural properties of the multilayer graphene/4H-SiC(0001) system as determined by surface x-ray diffraction , 2007, cond-mat/0702540.

[44]  Claire Berger,et al.  Electron states of mono and bilayer graphene on SiC probed by scanning-tunneling microscopy , 2007 .

[45]  U Zeitler,et al.  Room-Temperature Quantum Hall Effect in Graphene , 2007, Science.

[46]  C Berger,et al.  Electronic structure of epitaxial graphene layers on SiC: effect of the substrate. , 2007, Physical review letters.

[47]  Inelastic carrier lifetime in graphene , 2006, cond-mat/0612345.

[48]  Taisuke Ohta,et al.  Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. , 2006, Physical review letters.

[49]  G. Burkard,et al.  Spin qubits in graphene quantum dots , 2006, cond-mat/0611252.

[50]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[51]  T. Ohta,et al.  Quasiparticle dynamics in graphene , 2007 .

[52]  S. Louie,et al.  Half-metallic graphene nanoribbons , 2006, Nature.

[53]  K. Emtsev,et al.  Electronic Structure of Graphite/6H-SiC Interfaces , 2006, cond-mat/0610220.

[54]  K. Emtsev,et al.  Initial Stages of the Graphite-SiC(0001) Interface Formation Studied by Photoelectron Spectroscopy , 2006, cond-mat/0609383.

[55]  K. Emtsev,et al.  Structural and electronic properties of graphite layers grown on SiC(0001). , 2006 .

[56]  T. Ohta,et al.  Controlling the Electronic Structure of Bilayer Graphene , 2006, Science.

[57]  Edward McCann Asymmetry gap in the electronic band structure of bilayer graphene , 2006 .

[58]  Luc Henrard,et al.  Charge carriers in few-layer graphene films. , 2006, Physical review letters.

[59]  K. Emtsev,et al.  Schottky barrier between 6H-SiC and graphite: Implications for metal/SiC contact formation , 2006 .

[60]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[61]  Electronic states and Landau levels in graphene stacks , 2006, cond-mat/0604396.

[62]  C. Berger,et al.  Highly ordered graphene for two dimensional electronics , 2006 .

[63]  A. Geim,et al.  Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene , 2006, cond-mat/0602565.

[64]  J. L. McChesney,et al.  Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate , 2006 .

[65]  V. Fal’ko,et al.  Landau-level degeneracy and quantum Hall effect in a graphite bilayer. , 2005, Physical review letters.

[66]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[67]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[68]  N Emery,et al.  Superconductivity of bulk CaC6. , 2005, Physical review letters.

[69]  B. Delley,et al.  Gap opening in the surface electronic structure of graphite induced by adsorption of alkali atoms: Photoemission experiments and density functional calculations , 2005 .

[70]  Siddharth S. Saxena,et al.  Superconductivity in the intercalated graphite compounds C6Yb and C6Ca , 2005, cond-mat/0503570.

[71]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[73]  C. Berger,et al.  Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. , 2004, cond-mat/0410240.

[74]  Angel Rubio,et al.  Ab initio study of the optical absorption and wave-vector-dependent dielectric response of graphite , 2004 .

[75]  U. Starke Atomic Structure of SiC Surfaces , 2004 .

[76]  Takashi Miyake,et al.  Quasiparticle band structure of carbon nanotubes , 2003 .

[77]  F. Shoji,et al.  An STM Observation of the Initial Process of Graphitization at the ${\rm 6H \mbox-SiC}(000{\bar 1})$ Surface , 2003 .

[78]  A. Charrier,et al.  Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films , 2002 .

[79]  Zikang Tang,et al.  Superconductivity in 4 Angstrom Single-Walled Carbon Nanotubes , 2001, Science.

[80]  Andrew G. Glen,et al.  APPL , 2001 .

[81]  A. Kasumov,et al.  Superconductivity in ropes of single-walled carbon nanotubes. , 2000, Physical review letters.

[82]  F. Physik,et al.  Surface intercalation of gold underneath a graphite monolayer on NiÑ111Ö studied by angle-resolved photoemission and high-resolution electron-energy-loss spectroscopy , 2000 .

[83]  U. Starke,et al.  Avoidance of ghost atoms in holographic low-energy electron diffraction (LEED) , 2000 .

[84]  A. Seubert,et al.  In situ surface phases and silicon-adatom geometry of the (2×2) C structure on 6H-SiC(0001̄) , 2000 .

[85]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[86]  J. Themlin,et al.  High-temperature graphitization of the 6H-SiC (0001̄) face , 1999 .

[87]  U. Starke,et al.  Epitaxially ideal oxide–semiconductor interfaces: Silicate adlayers on hexagonal (0001) and (0001̄) SiC surfaces , 1999 .

[88]  J.-M. Themlin,et al.  HETEROEPITAXIAL GRAPHITE ON 6H-SIC(0001): INTERFACE FORMATION THROUGH CONDUCTION-BAND ELECTRONIC STRUCTURE , 1998 .

[89]  P. Glans,et al.  A core level and valence band photoemission study of 6H-SiC(0001̄) , 1998 .

[90]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[91]  R. C. Clarke,et al.  Chapter 5 SiC for Applications in High-Power Electronics , 1998 .

[92]  U. Starke,et al.  Large Unit Cell Superstructures on Hexagonal SiC-Sufaces Studied by LEED, AES and STM , 1997 .

[93]  U. Starke,et al.  Morphology, bond saturation and reconstruction of hexagonal SiC surfaces , 1997 .

[94]  Johansson,et al.  High-resolution core-level study of 6H-SiC(0001). , 1996, Physical review. B, Condensed matter.

[95]  M. Dresselhaus Chapter 13 – Optical Properties , 1996 .

[96]  Shirley,et al.  Brillouin-zone-selection effects in graphite photoelectron angular distributions. , 1995, Physical review. B, Condensed matter.

[97]  M. Dresselhaus Carbon nanotubes , 1995 .

[98]  Nagashima,et al.  Electronic states of the pristine and alkali-metal-intercalated monolayer graphite/Ni(111) systems. , 1994, Physical review. B, Condensed matter.

[99]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[100]  D. Murphy,et al.  Superconductivity at 18 K in potassium-doped C60 , 1991, Nature.

[101]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[102]  P. Tipler,et al.  Modern Physics , 1976 .

[103]  J. E. Crombeen,et al.  LEED and Auger electron observations of the SiC(0001) surface , 1975 .

[104]  K. Andres,et al.  Superconductivity in Graphitic Compounds , 1965 .

[105]  Wolfram Klitzsch [K] , 1962, Dendara. Catalogue des dieux et des offrandes.

[106]  J. Slonczewski,et al.  Band Structure of Graphite , 1958 .

[107]  J. W. Mcclure Diamagnetism of Graphite , 1956 .

[108]  P. Wallace The Band Theory of Graphite , 1947 .

[109]  Oliver Bendel [E] , 1896, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.