The geodetic mass balance of Eyjafjallajökull ice cap for 1945–2014: processing guidelines and relation to climate

ABSTRACT Mass-balance measurements of Icelandic glaciers are sparse through the 20th century. However, the large archive of stereo images available allows estimates of glacier-wide mass balance ($\dot{B}$) in decadal time steps since 1945. Combined with climate records, they provide further insight into glacier–climate relationship. This study presents a workflow to process aerial photographs (1945–1995), spy satellite imagery (1977–1980) and modern satellite stereo images (since 2000) using photogrammetric techniques and robust statistics in a highly automated, open-source pipeline to retrieve seasonally corrected, decadal glacier-wide geodetic mass balances. In our test area, Eyjafjallajökull (S-Iceland, ~70 km2), we obtain a mass balance of $ $ \dot{\curr B}_{\curr 1945}^{\curr 2014} \curr = -0.27 \pm 0.03\,{\rm \curr m\ w}{\rm. \curr e}{\rm.} {\rm \curr a}^{{\rm \ndash \curr 1}}$, with a maximum and minimum of $\dot{\curr B}_{\curr 1984}^{\curr 1989} \curr = 0.77 \curr \pm 0.19\,{\rm \curr m\ \curr w}{\rm\curr . e}{\rm\curr .} {\rm\curr a}^{{\rm\curr \ndash 1}}$ and $\dot{\curr B}_{\curr 1994}^{\curr 1998}\curr = -1.94 \curr \pm 0.34\,{\rm \curr m\ w}{\rm\curr . e}{\rm\curr .} {\rm \curr a}^{{\rm\curr \ndash 1}}$, respectively, attributed to climatic forcing, and $\dot{\curr B}_{\curr 2009}^{\curr 2010} \curr = -3.39{\rm \;} \curr \pm {\rm \;} \curr 0.43\,{\rm \curr m\ w}{\rm\curr . e}{\rm\curr .} {\rm\curr a}^{{\rm\curr \ndash 1}}$, mostly caused by the April 2010 eruption. The reference-surface mass balances correlate with summer temperature and winter precipitation, and linear regression accounts for 80% of the mass-balance variability, yielding a static sensitivity of mass balance to summer temperature and winter precipitation of − 2.1 ± 0.4 m w.e.a–1K–1 and 0.5 ± 0.3 m w.e.a–1 (10%)–1, respectively. This study serves as a template that can be used to estimate the mass-balance changes and glaciers' response to climate.

[1]  H. Björnsson,et al.  The response of a glacier to a surface disturbance: a case study on Vatnajökull ice cap, Iceland , 2000, Annals of Glaciology.

[2]  N. Eckert,et al.  Glaciological and volumetric mass-balance measurements: error analysis over 51 years for Glacier de Sarennes, French Alps , 2008, Journal of Glaciology.

[3]  Helgi Björnsson,et al.  Subglacial lakes and jökulhlaups in Iceland , 2003 .

[4]  Marc Bernard,et al.  SPIRIT. SPOT 5 stereoscopic survey of Polar Ice: Reference Images and Topographies during the fourth International Polar Year (2007-2009) , 2008 .

[5]  R. Bindschadler,et al.  Changes in the west antarctic ice sheet since 1963 from declassified satellite photography , 1998, Science.

[6]  R. Armstrong,et al.  Quality in the GLIMS Glacier Database , 2014 .

[7]  W. Harrison,et al.  On the characterization of glacier response by a single time-scale , 2001, Journal of Glaciology.

[8]  E. Berthier,et al.  Area, elevation and mass changes of the two southernmost ice caps of the Canadian Arctic Archipelago between 1952 and 2014 , 2015 .

[9]  A. Ohmura Observed Mass Balance of Mountain Glaciers and Greenland Ice Sheet in the 20th Century and the Present Trends , 2011 .

[10]  Myoung-Jong Noh,et al.  Automated stereo-photogrammetric DEM generation at high latitudes: Surface Extraction with TIN-based Search-space Minimization (SETSM) validation and demonstration over glaciated regions , 2015 .

[11]  E. Berthier,et al.  Contribution of Icelandic ice caps to sea level rise: Trends and variability since the Little Ice Age , 2013 .

[12]  Finnur Pálsson,et al.  Glacier topography and elevation changes derived from Pléiades sub-meter stereo images , 2014 .

[13]  J. Oerlemans,et al.  Global and hemispheric temperature reconstruction from glacier length fluctuations , 2010, Climate Dynamics.

[14]  T. Thordarson,et al.  Subglacial lava propagation, ice melting and heat transfer during emplacement of an intermediate lava flow in the 2010 Eyjafjallajökull eruption , 2016, Bulletin of Volcanology.

[15]  Pascal G. Lacroix,et al.  Landslides triggered by the Gorkha earthquake in the Langtang valley, volumes and initiation processes , 2016, Earth, Planets and Space.

[16]  N. Barrand,et al.  Extracting photogrammetric ground control from lidar DEMs for change detection , 2006 .

[17]  K. Fujita,et al.  Contrasting glacier responses to recent climate change in high-mountain Asia , 2017, Scientific Reports.

[18]  Tómas Jóhannesson,et al.  Degree-day glacier mass-balance modelling with applications to glaciers in Iceland, Norway and Greenland , 1995 .

[19]  P. Crochet,et al.  Geodetic mass balance record with rigorous uncertainty estimates deduced from aerial photographs and lidar data – Case study from Drangajökull ice cap, NW Iceland , 2015 .

[20]  N. Barrand,et al.  Optimizing photogrammetric DEMs for glacier volume change assessment using laser-scanning derived ground-control points , 2009, Journal of Glaciology.

[21]  E. Berthier,et al.  Mass and volume changes of Langjökull ice cap, Iceland, ~1890 to 2009, deduced from old maps, satellite images and in situ mass balance measurements , 2012, Jökull.

[22]  Matthias Huss,et al.  Global-scale hydrological response to future glacier mass loss , 2018, Nature Climate Change.

[23]  R. Hock,et al.  Conventional versus reference-surface mass balance , 2012 .

[24]  N. Nawri,et al.  The ICRA atmospheric reanalysis project for Iceland , 2017 .

[25]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[26]  Thorvaldur Thordarson,et al.  Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland , 2012, Scientific Reports.

[27]  T. Jónsson,et al.  Estimating the Spatial Distribution of Precipitation in Iceland Using a Linear Model of Orographic Precipitation , 2007 .

[28]  E. Berthier,et al.  Decadal Region-Wide and Glacier-Wide Mass Balances Derived from Multi-Temporal ASTER Satellite Digital Elevation Models. Validation over the Mont-Blanc Area , 2016, Front. Earth Sci..

[29]  David Parkes,et al.  Attribution of global glacier mass loss to anthropogenic and natural causes , 2014, Science.

[30]  J. Hagen,et al.  Distributed mass-balance and climate sensitivity modelling of Engabreen, Norway , 2005, Annals of Glaciology.

[31]  J. Oerlemans,et al.  Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic , 2000, Journal of Glaciology.

[32]  Nico Mölg,et al.  Structure-from-Motion Using Historical Aerial Images to Analyse Changes in Glacier Surface Elevation , 2017, Remote. Sens..

[33]  A. Lambrecht,et al.  Glacier changes in the Austrian Alps during the last three decades, derived from the new Austrian glacier inventory , 2007, Annals of Glaciology.

[34]  W. Harrison,et al.  Quantifying the effects of climate and surface change on glacier mass balance , 2001, Journal of Glaciology.

[35]  A. Kääb,et al.  Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change , 2011 .

[36]  Ian Joughin,et al.  An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery , 2016 .

[37]  Michael Höhle,et al.  Accuracy assessment of digital elevation models by means of robust statistical methods , 2009 .

[38]  Helgi Björnsson,et al.  Ice-volume changes, bias estimation of mass-balance measurements and changes in subglacial lakes derived by lidar mapping of the surface of Icelandic glaciers , 2013, Annals of Glaciology.

[39]  P. Holmlund,et al.  Historically unprecedented global glacier decline in the early 21st century , 2015 .

[40]  R. Hock,et al.  100‐year mass changes in the Swiss Alps linked to the Atlantic Multidecadal Oscillation , 2010 .

[41]  Lisa Bengtsson,et al.  The HARMONIE-AROME Model Configuration in the ALADIN-HIRLAM NWP System , 2017 .

[42]  E. Rupnik,et al.  MicMac – a free, open-source solution for photogrammetry , 2017, Open Geospatial Data, Software and Standards.

[43]  Helgi Björnsson,et al.  Surges of glaciers in Iceland , 2003, Annals of Glaciology.

[44]  E. Berthier,et al.  A spatially resolved estimate of High Mountain Asia glacier mass balances, 2000-2016 , 2017, Nature geoscience.

[45]  Arzhan B. Surazakov,et al.  Positional accuracy evaluation of declassified hexagon KH-9 mapping camera imagery. , 2010 .

[46]  B. Denby,et al.  Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: application to the western Svartisen ice cap, Norway , 2009, Journal of Glaciology.

[47]  L. Clarke,et al.  Rigorous 3D change determination in Antarctic Peninsula glaciers from stereo WorldView-2 and archival aerial imagery , 2018 .

[48]  R. Hock,et al.  Static mass-balance sensitivity of Arctic glaciers and ice caps using a degree-day approach , 2005, Annals of Glaciology.

[49]  E. Berthier,et al.  Modelling the 20th and 21st century evolution of Hoffellsjökull glacier, SE-Vatnajökull, Iceland , 2011 .

[50]  M. Huss Density assumptions for converting geodetic glacier volume change to mass change , 2013 .

[51]  Etienne Berthier,et al.  Evaluation of MODIS Albedo Product over Ice Caps in Iceland and Impact of Volcanic Eruptions on Their Albedo , 2017, Remote. Sens..

[52]  Freysteinn Sigmundsson,et al.  Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption , 2010, Nature.

[53]  R. Armstrong,et al.  The Physics of Glaciers , 1981 .

[54]  J. Dall Cross-calibration of interferometric SAR data , 2003 .

[55]  Matthew E. Pritchard,et al.  Ice loss from the Southern Patagonian Ice Field, South America, between 2000 and 2012 , 2012 .

[56]  K. Fujita,et al.  Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992-2008 , 2012, Journal of Glaciology.

[57]  M. Hoelzle,et al.  Surface elevation and mass changes of all Swiss glaciers 1980–2010 , 2014 .

[58]  L. A. Rasmussen,et al.  Glossary of glacier mass balance and related terms , 2010 .

[59]  M. Pierrot Deseilligny,et al.  APERO, AN OPEN SOURCE BUNDLE ADJUSMENT SOFTWARE FOR AUTOMATIC CALIBRATION AND ORIENTATION OF SET OF IMAGES , 2012 .

[60]  W. T. Pfeffer,et al.  Response time of glaciers as a function of size and mass balance: 1. Theory , 1998 .

[61]  Jeffrey S. Kargel,et al.  Global Land Ice Measurements from Space , 2014 .

[62]  Siri Jodha Singh Khalsa,et al.  The GLIMS geospatial glacier database: A new tool for studying glacier change ☆ , 2007 .

[63]  E. Berthier,et al.  Response of Eyjafjallajökull, Torfajökull and Tindfjallajökull ice caps in Iceland to regional warming, deduced by remote sensing , 2011 .

[64]  Christoph Schneider,et al.  MODIS-derived albedo changes of Vatnajökull (Iceland) due to tephra deposition from the 2004 Grímsvötn eruption , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[65]  E. Berthier,et al.  Winter mass balance of Drangajökull ice cap (NW Iceland) derived from satellite sub-meter stereo images , 2016 .

[66]  Michael J. Willis,et al.  Recharge of a subglacial lake by surface meltwater in northeast Greenland , 2015, Nature.

[67]  G. de Leeuw,et al.  Insulation effects of Icelandic dust and volcanic ash on snow and ice , 2016, Arabian Journal of Geosciences.

[68]  L. Andreassen,et al.  Sensitivities of glacier mass balance and runoff to climate perturbations in Norway , 2015, Annals of Glaciology.