Malaria − an overview

Malaria is caused by protozoan parasites of the genus Plasmodium and is a major cause of mortality and morbidity worldwide. These parasites have a complex life cycle in their mosquito vector and vertebrate hosts. The primary factors contributing to the resurgence of malaria are the appearance of drug‐resistant strains of the parasite, the spread of insecticide‐resistant strains of the mosquito and the lack of licensed malaria vaccines of proven efficacy. This minireview includes a summary of the disease, the life cycle of the parasite, information relating to the genome and proteome of the species lethal to humans, Plasmodium falciparum, together with other recent developments in the field.

[1]  P. Gornicki Apicoplast fatty acid biosynthesis as a target for medical intervention in apicomplexan parasites. , 2003, International journal for parasitology.

[2]  H. Ginsburg Progress in in silico functional genomics: the malaria Metabolic Pathways database. , 2006, Trends in parasitology.

[3]  R. Snow,et al.  New insights into the epidemiology of malaria relevant for disease control. , 1998, British medical bulletin.

[4]  David L. Tabb,et al.  A proteomic view of the Plasmodium falciparum life cycle , 2002, Nature.

[5]  R. Gwilliam,et al.  The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum , 1999, Nature.

[6]  G. Christophides Transgenic mosquitoes and malaria transmission , 2005, Cellular microbiology.

[7]  Thanat Chookajorn,et al.  Epigenetic memory at malaria virulence genes , 2007, Proceedings of the National Academy of Sciences.

[8]  Susumu Goto,et al.  The KEGG resource for deciphering the genome , 2004, Nucleic Acids Res..

[9]  X. Su,et al.  The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of plasmodium falciparum-infected erythrocytes , 1995, Cell.

[10]  D. Carucci,et al.  Update on the clinical development of candidate malaria vaccines. , 2004, The American journal of tropical medicine and hygiene.

[11]  J. Breman,et al.  The intolerable burden of malaria: a new look at the numbers. , 2001, The American journal of tropical medicine and hygiene.

[12]  A. Cowman,et al.  The Plasmodium falciparum Genome-- a Blueprint for Erythrocyte Invasion , 2002, Science.

[13]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[14]  Rogerio Amino,et al.  Manipulation of Host Hepatocytes by the Malaria Parasite for Delivery into Liver Sinusoids , 2006, Science.

[15]  M. Mota,et al.  Migration of Plasmodium sporozoites through cells before infection. , 2001, Science.

[16]  P. Rosenthal Antimalarial chemotherapy: mechanisms of action, resistance, and new directions in drug discovery. , 2002 .

[17]  Photini Sinnis,et al.  Plasmodium sporozoites trickle out of the injection site , 2007, Cellular microbiology.

[18]  H. Webster,et al.  Molecular basis of sequestration in severe and uncomplicated Plasmodium falciparum malaria: differential adhesion of infected erythrocytes to CD36 and ICAM-1. , 1991, The Journal of infectious diseases.

[19]  A. Craig,et al.  Cytoadherence, pathogenesis and the infected red cell surface in Plasmodium falciparum. , 1999, International journal for parasitology.

[20]  J. Beeson,et al.  Pathogenesis of Plasmodium falciparum malaria: the roles of parasite adhesion and antigenic variation , 2002, Cellular and Molecular Life Sciences CMLS.

[21]  R. Snow,et al.  Pediatric mortality in Africa: plasmodium falciparum malaria as a cause or risk? , 2004, The American journal of tropical medicine and hygiene.

[22]  M. Kieny,et al.  A review of human vaccine research and development: malaria. , 2007, Vaccine.

[23]  J. Derisi,et al.  The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum , 2003, PLoS biology.

[24]  M. Bölker,et al.  A putative endosomal t‐SNARE links exo‐ and endocytosis in the phytopathogenic fungus Ustilago maydis , 2000, The EMBO journal.

[25]  E. Pizzi,et al.  Low-complexity regions in Plasmodium falciparum proteins. , 2001, Genome research.

[26]  M. Barrett,et al.  The plastidic DNA replication enzyme complex of Plasmodium falciparum. , 2005, Molecular and biochemical parasitology.

[27]  J. Pinney,et al.  metaSHARK: software for automated metabolic network prediction from DNA sequence and its application to the genomes of Plasmodium falciparum and Eimeria tenella , 2005, Nucleic acids research.

[28]  Jeffrey D. Sachs,et al.  A New Global Effort to Control Malaria , 2002, Science.

[29]  H. Lichtenthaler,et al.  Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. , 1999, Science.

[30]  F. Cohen,et al.  Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray , 2003, Genome Biology.

[31]  C. Whitty,et al.  Cost-Effectiveness Study of Three Antimalarial Drug Combinations in Tanzania , 2006, PLoS medicine.

[32]  J. Wiesner,et al.  Isoprenoid biosynthesis of the apicoplast as drug target. , 2007, Current drug targets.

[33]  J. Barnwell,et al.  Ensuring quality and access for malaria diagnosis: how can it be achieved? , 2006, Nature Reviews Microbiology.

[34]  Leemor Joshua-Tor,et al.  Structural Basis for the EBA-175 Erythrocyte Invasion Pathway of the Malaria Parasite Plasmodium falciparum , 2005, Cell.

[35]  M. Molyneux,et al.  Plasmodium falciparum isolates from infected pregnant women and children are associated with distinct adhesive and antigenic properties. , 1999, The Journal of infectious diseases.

[36]  Neil Hall,et al.  Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry , 2002, Nature.

[37]  G. McFadden,et al.  The effects of anti-bacterials on the malaria parasite Plasmodium falciparum. , 2007, Molecular and biochemical parasitology.

[38]  T. McCutchan,et al.  Inhibition of Plasmodium falciparum Protein Synthesis , 1997, The Journal of Biological Chemistry.

[39]  Manuel Llinás,et al.  Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains , 2006, Nucleic acids research.

[40]  B. Greenwood,et al.  Malaria--a Shadow over Africa , 2002, Science.

[41]  K. Williamson,et al.  Malaria transmission‐blocking antigen, Pfs230, mediates human red blood cell binding to exflagellating male parasites and oocyst production , 2006, Molecular microbiology.

[42]  Robert G. Ridley,et al.  Medical need, scientific opportunity and the drive for antimalarial drugs , 2002, Nature.

[43]  David S. Roos,et al.  A plastid organelle as a drug target in apicomplexan parasites , 1997, Nature.

[44]  B. Greenwood,et al.  Malaria in 2002 , 2002, Nature.

[45]  J. Reeder,et al.  Parasite adhesion and immune evasion in placental malaria. , 2001, Trends in parasitology.

[46]  D. Roos,et al.  Targeting and Processing of Nuclear-encoded Apicoplast Proteins in Plastid Segregation Mutants of Toxoplasma gondii* , 2001, The Journal of Biological Chemistry.

[47]  R. Wilson,et al.  The genome of Plasmodium falciparum encodes an active delta-aminolevulinic acid dehydratase. , 2002, Current genetics.

[48]  U. d’Alessandro,et al.  The contribution of malaria in pregnancy to perinatal mortality. , 2004, The American journal of tropical medicine and hygiene.

[49]  G. McFadden,et al.  Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway , 2000, The EMBO journal.

[50]  R. Snow,et al.  Estimating mortality, morbidity and disability due to malaria among Africa's non-pregnant population. , 1999, Bulletin of the World Health Organization.

[51]  M. T. Marrelli,et al.  Transgenic malaria-resistant mosquitoes have a fitness advantage when feeding on Plasmodium-infected blood , 2007, Proceedings of the National Academy of Sciences.

[52]  R. Wilson,et al.  The genome of Plasmodium falciparum encodes an active δ-aminolevulinic acid dehydratase , 2002, Current Genetics.

[53]  A. Hill,et al.  Malaria vaccines: the stage we are at , 2007, Nature Reviews Microbiology.

[54]  Ogobara K. Doumbo,et al.  The pathogenic basis of malaria , 2002, Nature.

[55]  N. Surolia,et al.  Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum , 2001, Nature Medicine.

[56]  V. Nussenzweig,et al.  Malaria circumsporozoite protein binds to heparan sulfate proteoglycans associated with the surface membrane of hepatocytes , 1993, The Journal of experimental medicine.

[57]  Leann Tilley,et al.  Illuminating Plasmodium falciparum-infected red blood cells. , 2007, Trends in parasitology.

[58]  M. Wahlgren,et al.  Molecular Aspects of Severe Malaria , 1996, Clinical Microbiology Reviews.

[59]  Theodore F. Taraschi,et al.  Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes , 1995, Cell.

[60]  A. Pradhan,et al.  Unraveling the ‘DEAD-box’ helicases of Plasmodium falciparum , 2006, Gene.

[61]  D. Baruch Adhesive receptors on malaria-parasitized red cells. , 1999, Bailliere's best practice & research. Clinical haematology.