Extração de conhecimento e análise visual de redes sociais

A social network is a graph where people or organizations (depending on the application) are represented as nodes connected by edges that can refer to either tight social bonds or some common, shared aspect. The graph structure analysis and the statistical analysis of specific node/edge attributes can reveal important individuals, relationships, and clusters. New information continues to be collected and stored, and size and complexity of the semantic graphs overwhelm the human cognitive abilities. Hence, it is necessary to improve the computational mechanisms to analyze such volume of data. In this paper, we focus on analyzing the information from social networks, extracting relevant knowledge, and visualizing the facts resultant from the analysis. Resumo. Uma rede social é um grafo onde pessoas ou organizações (dependendo da aplicação) são representadas por nodos conectados por arestas as quais podem corresponder tanto a fortes relacionamentos sociais como ao compartilhamento de alguma característica. A análise da estrutura desse grafo, assim como a análise estatística dos atributos dos nodos e/ou das arestas pode revelar indivíduos/organizações importantes, relacionamentos especiais e grupos. Enquanto novas informações continuam a ser coletadas e armazenadas, e o tamanho e a complexidade dos grafos semânticos sobrepujam a capacidade cognitiva humana, é necessário melhorar a habilidade de analisar tais volumes de dados. Este artigo focaliza a análise da informação presente nas redes sociais, a extração de conhecimento a partir de grafos e a visualização de fatos decorrentes dessa análise.

[1]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[2]  Luís C. Lamb,et al.  An Information-Theoretic Analysis of Memory Bounds in a Distributed Resource Allocation Mechanism , 2007, IJCAI.

[3]  Alberto H. F. Laender,et al.  BDBComp: building a digital library for the Brazilian computer science community , 2004, Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries, 2004..

[4]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[5]  Duncan J. Watts,et al.  Six Degrees: The Science of a Connected Age , 2003 .

[6]  Albert-László Barabási,et al.  Linked - how everything is connected to everything else and what it means for business, science, and everyday life , 2003 .

[7]  L. Lamb,et al.  Distributed Problem Solving by Memetic Networks , 2008 .

[8]  Ahmad Ashari,et al.  Storing And Querying XML Data Using RDBMS , 2004, iiWAS.

[9]  Alessandro Lomi,et al.  Identifying and Classifying Social Groups: A Machine Learning Approach , 2006, Data Science and Classification.

[10]  Carla Maria Dal Sasso Freitas,et al.  A physics-based approach for interactive manipulation of graph visualizations , 2008, AVI '08.

[11]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[12]  Martin Wattenberg,et al.  Visual exploration of multivariate graphs , 2006, CHI.

[13]  Guttorm Sindre,et al.  Onion graphs: aesthetics and layout , 1993, Proceedings 1993 IEEE Symposium on Visual Languages.

[14]  Vladimir Batagelj,et al.  Exploratory Social Network Analysis with Pajek , 2005 .

[15]  Steven K. Feiner,et al.  Visual task characterization for automated visual discourse synthesis , 1998, CHI.

[16]  George S. Day,et al.  Assessing Advantage: A Framework for Diagnosing Competitive Superiority , 1988 .

[17]  Ivan Herman,et al.  Graph Visualization and Navigation in Information Visualization: A Survey , 2000, IEEE Trans. Vis. Comput. Graph..

[18]  George H. John Enhancements to the data mining process , 1997 .

[19]  Gautam Kumar,et al.  Visual Exploration of Complex Time-Varying Graphs , 2006, IEEE Transactions on Visualization and Computer Graphics.

[20]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery: An Overview , 1996, Advances in Knowledge Discovery and Data Mining.

[21]  Hideyuki Nakashima,et al.  Emergence of global network property based on multi-agent voting model , 2007, AAMAS '07.

[22]  Jean-Daniel Fekete,et al.  MatrixExplorer: a Dual-Representation System to Explore Social Networks , 2006, IEEE Transactions on Visualization and Computer Graphics.

[23]  James R. Eagan,et al.  Low-level components of analytic activity in information visualization , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[24]  Jean-Daniel Fekete,et al.  Melange: space folding for multi-focus interaction , 2008, CHI.

[25]  Ravi Kumar,et al.  Structure and evolution of online social networks , 2006, KDD '06.

[26]  Jean-Daniel Fekete,et al.  NodeTrix: Hybrid Representation for Analyzing Social Networks , 2007, ArXiv.

[27]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[28]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[29]  John J. Bertin,et al.  The semiology of graphics , 1983 .

[30]  Cong Yu,et al.  TIMBER: A native XML database , 2002, The VLDB Journal.