A GENERAL PROGRAM FOR ITEM‐RESPONSE ANALYSIS THAT EMPLOYS THE STABILIZED NEWTON–RAPHSON ALGORITHM

A general program for item-response analysis is described that uses the stabilized Newton—Raphson algorithm. This program is written to be compliant with Fortran 2003 standards and is sufficiently general to handle independent variables, multidimensional ability parameters, and matrix sampling. The ability variables may be either polytomous or multivariate normal. Items may be dichotomous or polytomous.

[1]  G. H. Fischer,et al.  The linear logistic test model as an instrument in educational research , 1973 .

[2]  E. Muraki A Generalized Partial Credit Model: Application of an EM Algorithm , 1992 .

[3]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[4]  L. Isserlis ON A FORMULA FOR THE PRODUCT-MOMENT COEFFICIENT OF ANY ORDER OF A NORMAL FREQUENCY DISTRIBUTION IN ANY NUMBER OF VARIABLES , 1918 .

[5]  F. Lord Applications of Item Response Theory To Practical Testing Problems , 1980 .

[6]  L. J. Savage Elicitation of Personal Probabilities and Expectations , 1971 .

[7]  R. D. Bock,et al.  High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature , 2005 .

[8]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .

[9]  Richard Goldstein Latent Class and Discrete Latent Trait Models: Similarities and Differences , 1998 .

[10]  S. Haberman,et al.  When Does Scale Anchoring Work? A Case Study. , 2011 .

[11]  T. Louis Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .

[12]  M. Kupperman Linear Statistical Inference and Its Applications 2nd Edition (C. Radhakrishna Rao) , 1975 .

[13]  Shelby J. Haberman,et al.  Reporting of Subscores Using Multidimensional Item Response Theory , 2010 .

[14]  Matthias von Davier,et al.  A general diagnostic model applied to language testing data. , 2008, The British journal of mathematical and statistical psychology.

[15]  J. Naylor,et al.  Applications of a Method for the Efficient Computation of Posterior Distributions , 1982 .

[16]  Georg Rasch,et al.  Probabilistic Models for Some Intelligence and Attainment Tests , 1981, The SAGE Encyclopedia of Research Design.

[17]  Raymond J. Adams,et al.  The Multidimensional Random Coefficients Multinomial Logit Model , 1997 .

[18]  Shelby J. Haberman,et al.  A Stabilized Newton-Raphson Algorithm for Log-Linear Models for Frequency Tables Derived by Indirect Observation , 1988 .

[19]  Shelby J. Haberman,et al.  Log-Linear Models for Frequency Data: Sufficient Statistics and Likelihood Equations , 1973 .

[20]  Eugene G. Johnson,et al.  Scaling Procedures in NAEP , 1992 .

[21]  S. Haberman,et al.  Prediction functions for categorical panel data , 1995 .

[22]  Paul W. Holland The Dutch Identity: A new tool for the study of item response models , 1990 .

[23]  Shelby J. Haberman,et al.  Adjustment by Minimum Discriminant Information , 1984 .

[24]  H. Akaike A new look at the statistical model identification , 1974 .

[25]  Shelby J. Haberman,et al.  Generalized Residuals for General Models for Contingency Tables With Application to Item Response Theory , 2013 .

[26]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[27]  Shelby J. Haberman,et al.  USE OF GENERALIZED RESIDUALS TO EXAMINE GOODNESS OF FIT OF ITEM RESPONSE MODELS , 2009 .

[28]  S. Haberman,et al.  Analysis of Categorical Response Profiles By Informative Summaries , 2001 .

[29]  Shelby J. Haberman,et al.  Conditional Log-Linear Models for Analyzing Categorical Panel Data , 1994 .

[30]  G. Masters A rasch model for partial credit scoring , 1982 .

[31]  Matthias von Davier,et al.  COMPARISON OF MULTIDIMENSIONAL ITEM RESPONSE MODELS: MULTIVARIATE NORMAL ABILITY DISTRIBUTIONS VERSUS MULTIVARIATE POLYTOMOUS ABILITY DISTRIBUTIONS , 2008 .

[32]  Frederic M. Lord,et al.  Comparison of IRT True-Score and Equipercentile Observed-Score "Equatings" , 1984 .

[33]  H. Cramér Mathematical Methods of Statistics (PMS-9), Volume 9 , 1946 .

[34]  Terry Speed Statistics for Experimenters: Design, Innovation, and Discovery (2nd ed.) , 2006 .

[35]  S. Haberman Analysis of qualitative data , 1978 .

[36]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters , 1982 .

[37]  C. R. Rao,et al.  Linear Statistical Inference and its Applications , 1968 .

[38]  James Hardy Wilkinson,et al.  Rounding errors in algebraic processes , 1964, IFIP Congress.

[39]  Donald Hedeker,et al.  Full-information item bi-factor analysis , 1992 .

[40]  Mary Pommerich,et al.  Item Response Theory for Scores on Tests Including Polytomous Items with Ordered Responses , 1995 .

[41]  Donald Hedeker,et al.  Full-Information Item Bifactor Analysis of Graded Response Data , 2007 .

[42]  Shelby J. Haberman,et al.  ADAPTIVE QUADRATURE FOR ITEM RESPONSE MODELS , 2006 .

[43]  Melvin R. Novick,et al.  Some latent train models and their use in inferring an examinee's ability , 1966 .

[44]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[45]  S. Haberman Concavity and estimation , 1989 .