A determination of the low energy parameters of the 2-d Heisenberg antiferromagnet

We perform numerical simulations of the 2-d Heisenberg antiferromagnet using a cluster algorithm. Comparing the size and temperature effects of various quantities with results from chiral perturbation theory we determine the low energy parameters of the system very precisely. We finde0=−0.6693(1)J/a2 for the ground state energy density, ℳs = 0.3074(4)/a2 for the staggered magnetization,ħc=1.68(1)J a for the spin wave velocity andps=0.186(4)J for the spin stiffness. Our results agree with experimental data for the precursor insulators of high-Tc superconductors.

[1]  T. Barnes,et al.  THE 2D HEISENBERG ANTIFERROMAGNET IN HIGH-Tc SUPERCONDUCTIVITY: A Review of Numerical Techniques and Results , 1991 .

[2]  K. Müller,et al.  Possible highTc superconductivity in the Ba−La−Cu−O system , 1986 .

[3]  Bosonization and cluster updating of lattice fermions , 1992, hep-lat/9210019.

[4]  Neuberger,et al.  Finite-size effects in Heisenberg antiferromagnets. , 1989, Physical review. B, Condensed matter.

[5]  Fisk,et al.  Magnetic dynamics of La2CuO4 and La2-xBaxCuO4. , 1989, Physical review letters.

[6]  Blockspin cluster algorithms for quantum spin systems , 1992, cond-mat/9204014.

[7]  Fleury,et al.  Quantitative determination of quantum fluctuations in the spin-1/2 planar antiferromagnet. , 1989, Physical review letters.

[8]  Fisher,et al.  Universality, low-temperature properties, and finite-size scaling in quantum antiferromagnets. , 1989, Physical review. B, Condensed matter.

[9]  Zheng,et al.  Square-lattice Heisenberg antiferromagnet at T=0. , 1991, Physical review. B, Condensed matter.

[10]  Ding,et al.  Two-dimensional spin-1/2 Heisenberg antiferromagnet: A quantum Monte Carlo study. , 1991, Physical review. B, Condensed matter.

[11]  F. Niedermayer,et al.  Finite-size effects, goldstone bosons and critical exponents in the d = 3 Heisenberg model☆ , 1991 .

[12]  Lana,et al.  Cluster algorithm for vertex models. , 1993, Physical review letters.

[13]  F. Niedermayer,et al.  The exact correlation length of the antiferromagnetic d=2+1 Heisenberg model at low temperatures , 1991 .

[14]  K. Jansen,et al.  Finite size effects and spontaneously broken symmetries: the case of theO(4) model , 1990 .