A determination of the low energy parameters of the 2-d Heisenberg antiferromagnet
暂无分享,去创建一个
[1] T. Barnes,et al. THE 2D HEISENBERG ANTIFERROMAGNET IN HIGH-Tc SUPERCONDUCTIVITY: A Review of Numerical Techniques and Results , 1991 .
[2] K. Müller,et al. Possible highTc superconductivity in the Ba−La−Cu−O system , 1986 .
[3] Bosonization and cluster updating of lattice fermions , 1992, hep-lat/9210019.
[4] Neuberger,et al. Finite-size effects in Heisenberg antiferromagnets. , 1989, Physical review. B, Condensed matter.
[5] Fisk,et al. Magnetic dynamics of La2CuO4 and La2-xBaxCuO4. , 1989, Physical review letters.
[6] Blockspin cluster algorithms for quantum spin systems , 1992, cond-mat/9204014.
[7] Fleury,et al. Quantitative determination of quantum fluctuations in the spin-1/2 planar antiferromagnet. , 1989, Physical review letters.
[8] Fisher,et al. Universality, low-temperature properties, and finite-size scaling in quantum antiferromagnets. , 1989, Physical review. B, Condensed matter.
[9] Zheng,et al. Square-lattice Heisenberg antiferromagnet at T=0. , 1991, Physical review. B, Condensed matter.
[10] Ding,et al. Two-dimensional spin-1/2 Heisenberg antiferromagnet: A quantum Monte Carlo study. , 1991, Physical review. B, Condensed matter.
[11] F. Niedermayer,et al. Finite-size effects, goldstone bosons and critical exponents in the d = 3 Heisenberg model☆ , 1991 .
[12] Lana,et al. Cluster algorithm for vertex models. , 1993, Physical review letters.
[13] F. Niedermayer,et al. The exact correlation length of the antiferromagnetic d=2+1 Heisenberg model at low temperatures , 1991 .
[14] K. Jansen,et al. Finite size effects and spontaneously broken symmetries: the case of theO(4) model , 1990 .