Experimental and Theoretical High-Energy-Resolution X-ray Absorption Spectroscopy: Implications for the Investigation of the Entatic State.

High-energy-resolution-fluorescence-detected X-ray absorption near-edge structure (HERFD-XANES) spectroscopy is shown to be a sensitive tool to investigate the electronic changes of copper complexes induced by geometric distortions caused by the ligand backbone as a model for the entatic state. To fully exploit the information contained in the spectra gained by the high-energy-resolution technique, (time-dependent) density functional theory calculations based on plane-wave and localized orbital basis sets are performed, which in combination allow the complete spectral range from the prepeak to the first resonances above the edge step to be covered. Thus, spectral changes upon oxidation and geometry distortion in the copper N-(1,3-dimethylimidazolidin-2-ylidene)quinolin-8-amine (DMEGqu) complexes [CuI(DMEGqu)2](PF6) and [CuII(DMEGqu)2](OTf)2·MeCN can be accessed.

[1]  Frank Neese,et al.  Calibration of scalar relativistic density functional theory for the calculation of sulfur K-edge X-ray absorption spectra. , 2010, Inorganic chemistry.

[2]  M. Grabolle,et al.  Photosynthetic O2 Formation Tracked by Time-Resolved X-ray Experiments , 2005, Science.

[3]  M. Chergui,et al.  Time-resolved X-ray absorption spectroscopy: Watching atoms dance , 2009 .

[4]  Yanli Wang,et al.  Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009 .

[5]  Matthias Bauer,et al.  HERFD-XAS and valence-to-core-XES: new tools to push the limits in research with hard X-rays? , 2014, Physical chemistry chemical physics : PCCP.

[6]  Jens Eberhard,et al.  2-Aminopyrimidine-silver(I) based organic semiconductors: Electronic structure and optical response , 2012 .

[7]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[8]  Sonja Herres-Pawlis,et al.  Geometrical and optical benchmarking of copper guanidine–quinoline complexes: Insights from TD‐DFT and many‐body perturbation theory† , 2014, J. Comput. Chem..

[9]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[10]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[11]  Richard Grunzke,et al.  Insights into the influence of dispersion correction in the theoretical treatment of guanidine‐quinoline copper(I) complexes , 2014, J. Comput. Chem..

[12]  Peter Comba,et al.  Fit and misfit between ligands and metal ions , 2003 .

[13]  C. Floriani,et al.  Copper(I)-carbon monoxide chemistry: genesis and chemical and structural properties of copper(I) terminal and bridging carbonyls , 1982 .

[14]  I. Tavernelli,et al.  Solvent-induced luminescence quenching: static and time-resolved X-ray absorption spectroscopy of a copper(I) phenanthroline complex. , 2013, The journal of physical chemistry. A.

[15]  H. H. Johann,et al.  Die Erzeugung lichtstarker Röntgenspektren mit Hilfe von Konkavkristallen , 1931 .

[16]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[17]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[18]  Peter M W Gill,et al.  Self-consistent-field calculations of core excited states. , 2009, The Journal of chemical physics.

[19]  K. Hodgson,et al.  X-ray absorption edge determination of the oxidation state and coordination number of copper: application to the type 3 site in Rhus vernicifera laccase and its reaction with oxygen , 1987 .

[20]  M. Nielsen,et al.  Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses , 2015, Nature Communications.

[21]  Troy Van Voorhis,et al.  Constrained Density Functional Theory and Its Application in Long-Range Electron Transfer. , 2006 .

[22]  A. Shukla,et al.  Multiple pre-edge structures in CuK-edge x-ray absorption spectra of high-Tccuprates revealed by high-resolution x-ray absorption spectroscopy , 2009, 0909.0894.

[23]  J. Kongsted,et al.  Identifying the Hamiltonian structure in linear response theory. , 2014, The Journal of chemical physics.

[24]  G. Scuseria,et al.  Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes , 2003 .

[25]  Christoph R Jacob,et al.  High-resolution X-ray absorption spectroscopy of iron carbonyl complexes. , 2015, Physical chemistry chemical physics : PCCP.

[26]  Alexander Hoffmann,et al.  Catching an entatic state--a pair of copper complexes. , 2014, Angewandte Chemie.

[27]  Frank Neese,et al.  An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix , 2003, J. Comput. Chem..

[28]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[29]  François Lambert,et al.  Entasis through hook-and-loop fastening in a glycoligand with cumulative weak forces stabilizing Cu(I). , 2015, Journal of the American Chemical Society.

[30]  Matthias Bauer,et al.  X‐Ray Absorption Spectroscopy – the Method and Its Applications , 2012 .

[31]  Yi Lu,et al.  Design of a single protein that spans the entire 2-V range of physiological redox potentials , 2015, Proceedings of the National Academy of Sciences.

[32]  Peter Comba,et al.  Coordination compounds in the entatic state , 2000 .

[33]  H. Schugar,et al.  Nearly Tetrahedral 1:2 Complexes of Copper(I), Copper(II), Nickel(II), Cobalt(II), and Zinc(II) with 2,2′-Bis(2-imidazolyl)biphenyl. , 1987 .

[34]  F. Neese,et al.  Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange , 2009 .

[35]  Satoshi Tanaka,et al.  Resonant X-Ray Emission Spectroscopy in Dy Compounds , 1994 .

[36]  Francesco A Evangelista,et al.  Orthogonality constrained density functional theory for electronic excited states. , 2013, The journal of physical chemistry. A.

[37]  Julia Stanek,et al.  Implications of Guanidine Substitution on Copper Complexes as Entatic‐State Models , 2016 .

[38]  Alexander Hoffmann,et al.  Geometrical and optical benchmarking of copper(II) guanidine–quinoline complexes: Insights from TD‐DFT and many‐body perturbation theory (part II) , 2014, J. Comput. Chem..

[39]  C. Brouder,et al.  X-ray Linear Dichroism in cubic compounds: the case of Cr3+ in MgAl2O4 , 2008, 0806.1586.

[40]  P. Comba,et al.  Interpretation of the temperature-dependent color of blue copper protein mutants. , 2004, Journal of inorganic biochemistry.

[41]  Holger Dau,et al.  X-ray absorption spectroscopy to analyze nuclear geometry and electronic structure of biological metal centers—potential and questions examined with special focus on the tetra-nuclear manganese complex of oxygenic photosynthesis , 2003, Analytical and bioanalytical chemistry.

[42]  Christian Bressler,et al.  Ultrafast X-Ray Absorption Spectroscopy , 2004 .

[43]  Frank Neese,et al.  Prediction of iron K-edge absorption spectra using time-dependent density functional theory. , 2008, The journal of physical chemistry. A.

[44]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[45]  C. Brouder,et al.  Angular dependence of core hole screening in LiCoO2 : A DFT+U calculation of the oxygen and cobalt K-edge x-ray absorption spectra , 2009, 0912.2894.

[46]  Pantelides,et al.  Excitonic effects in core-excitation spectra of semiconductors , 2000, Physical review letters.

[47]  J. Wong,et al.  Quantitative speciation of Mn-bearing particulates emitted from Autos burning (methylcyclopentadienyl)manganese tricarbonyl-added gasolines using XANES spectroscopy , 2000 .

[48]  W. Tolman,et al.  Characterization of a Complex Comprising a {Cu2(S2)2}2+ Core: Bis(μ‐S22−)dicopper(III) or Bis(μ‐S2.−)dicopper(II)? , 2005 .

[49]  Francesco A. Evangelista,et al.  Simulation of X-ray absorption spectra with orthogonality constrained density functional theory. , 2015, Physical chemistry chemical physics : PCCP.

[50]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[51]  M. Witte,et al.  Density functional theory of the CuA‐like Cu2S2 diamond core in Cu 2II (NGuaS)2Cl2 , 2016, J. Comput. Chem..

[52]  D. Powell,et al.  Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, tau4. , 2007, Dalton transactions.

[53]  Friedhelm Bechstedt,et al.  Many-Body Approach to Electronic Excitations: Concepts and Applications , 2016 .

[54]  Nicholas A Besley,et al.  The effect of basis set and exchange-correlation functional on time-dependent density functional theory calculations within the Tamm-Dancoff approximation of the x-ray emission spectroscopy of transition metal complexes. , 2016, The Journal of chemical physics.

[55]  Eric L. Shirley,et al.  AB INITIO INCLUSION OF ELECTRON-HOLE ATTRACTION : APPLICATION TO X-RAY ABSORPTION AND RESONANT INELASTIC X-RAY SCATTERING , 1998 .

[56]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[57]  Peter Comba,et al.  Computation of structures and properties of transition metal compounds , 2009 .

[58]  Sivia,et al.  Deconvolution of lifetime broadening at rare-earth LIII edges compared to resonant inelastic x-ray scattering measurements. , 1996, Physical review. B, Condensed matter.

[59]  Thomas Fransson,et al.  Asymmetric-Lanczos-Chain-Driven Implementation of Electronic Resonance Convergent Coupled-Cluster Linear Response Theory. , 2012, Journal of chemical theory and computation.

[60]  Frank Neese,et al.  Time-dependent density functional calculations of ligand K-edge X-ray absorption spectra , 2008 .

[61]  Mathieu Taillefumier,et al.  X-ray absorption near-edge structure calculations with the pseudopotentials: Application to the K edge in diamond and α-quartz , 2002 .

[62]  O. Bunău,et al.  Self-consistent aspects of x-ray absorption calculations , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[63]  Fabrizio,et al.  High resolution X-ray resonant Raman scattering. , 1995, Physical Review Letters.

[64]  R. Gebauer,et al.  Ultrasoft pseudopotentials in time-dependent density-functional theory. , 2007, The Journal of chemical physics.

[65]  F. Neese,et al.  Joint spectroscopic and theoretical investigations of transition metal complexes involving non-innocent ligands. , 2007, Dalton transactions.

[66]  Uwe Bergmann,et al.  High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes—electronic and structural information , 2005 .

[67]  Frank Neese,et al.  Prediction of high-valent iron K-edge absorption spectra by time-dependent density functional theory. , 2011, Dalton transactions.

[68]  Yu Zhang,et al.  Simulating Valence-to-Core X-ray Emission Spectroscopy of Transition Metal Complexes with Time-Dependent Density Functional Theory. , 2015, Journal of chemical theory and computation.

[69]  Francesco Mauri,et al.  First-principles calculations of x-ray absorption in a scheme based on ultrasoft pseudopotentials: Fromα-quartz to high-Tccompounds , 2009 .

[70]  P. Comba Strains and stresses in coordination compounds , 1999 .

[71]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[72]  A. Geyh,et al.  Use of X-ray absorption spectroscopy to speciate manganese in airborne particulate matter from five counties across the United States. , 2012, Environmental science & technology.

[73]  Harry B. Gray,et al.  Type Zero Copper Proteins , 2009, Nature chemistry.

[74]  Frank Neese,et al.  The ORCA program system , 2012 .

[75]  Timothy J Nelson,et al.  A definitive example of a geometric "entatic state" effect: electron-transfer kinetics for a copper(II/I) complex involving A quinquedentate macrocyclic trithiaether-bipyridine ligand. , 2007, Journal of the American Chemical Society.

[76]  Eric W Dahl,et al.  Hydrogen Bonds Dictate the Coordination Geometry of Copper: Characterization of a Square-Planar Copper(I) Complex. , 2016, Angewandte Chemie.

[77]  T. Elder,et al.  Internal Reorganization Energies for Copper Redox Couples: The Slow Electron-Transfer Reactions of the [CuII/I(bib)2]2+/+ Couple , 1999 .

[78]  H. Koch,et al.  Near-Edge X-ray Absorption Fine Structure within Multilevel Coupled Cluster Theory. , 2016, Journal of chemical theory and computation.

[79]  C. Brouder,et al.  Relaxations around the substitutional chromium site in emerald: X-ray absorption experiments and density functional calculations , 2007 .

[80]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[81]  C. Cramer,et al.  X-ray absorption spectroscopic and computational investigation of a possible S···S interaction in the [Cu3S2]3+ core. , 2011, Journal of the American Chemical Society.

[82]  Frank Neese,et al.  Prediction and interpretation of the 57Fe isomer shift in Mössbauer spectra by density functional theory , 2002 .

[83]  K. Lancaster,et al.  Probing Cu(I) in homogeneous catalysis using high-energy-resolution fluorescence-detected X-ray absorption spectroscopy. , 2015, Chemical communications.

[84]  Xiaosong Li,et al.  Energy-Specific Equation-of-Motion Coupled-Cluster Methods for High-Energy Excited States: Application to K-edge X-ray Absorption Spectroscopy. , 2015, Journal of chemical theory and computation.

[85]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[86]  D. Siddons,et al.  Elimination of the inner-shell lifetime broadening in x-ray-absorption spectroscopy. , 1991, Physical review letters.

[87]  V. Heine,et al.  Electronic structure based on the local atomic environment for tight-binding bands. II , 1972 .

[88]  Arthur E. Martell,et al.  Ligand design for selective complexation of metal ions in aqueous solution , 1989 .

[89]  M. Calandra,et al.  Projector augmented wave calculation of x-ray absorption spectra at the L2,3 edges , 2013, 1304.6251.

[90]  P. Comba,et al.  Slow Electron Self‐Exchange in Spite of a Small Inner‐Sphere Reorganisation Energy − The Electron‐Transfer Properties of a Copper Complex with a Tetradentate Bispidine Ligand , 2004 .

[91]  Frank Neese,et al.  Molybdenum L-Edge XAS Spectra of MoFe Nitrogenase , 2014, Zeitschrift fur anorganische und allgemeine Chemie.

[92]  F. Mauri,et al.  Oxygen K -edge XANES of germanates investigated using first-principles calculations , 2007 .

[93]  Harry B. Gray,et al.  Copper coordination in blue proteins , 2000, JBIC Journal of Biological Inorganic Chemistry.

[94]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[95]  Edward I. Solomon,et al.  Recent advances in understanding blue copper proteins , 2011 .

[96]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[97]  Mario Ulises Delgado-Jaime,et al.  Expedited analysis of DFT outputs: Introducing moanalyzer , 2012, J. Comput. Chem..