Infinitesimally Robust estimation in general smoothly parametrized models

The aim of the paper is to give a coherent account of the robustness approach based on shrinking neighborhoods in the case of i.i.d. observations, and add some theoretical complements. An important aspect of the approach is that it does not require any particular model structure but covers arbitrary parametric models if only smoothly parametrized. In the meantime, equal generality has been achieved by object-oriented implementation of the optimally robust estimators. Exponential families constitute the main examples in this article. Not pretending a complete data analysis, we evaluate the robust estimates on real datasets from literature by means of our R packages ROptEst and RobLox.

[1]  K. Do,et al.  Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .

[2]  J. Chambers Programming with Data: A Guide to the S Language , 1998 .

[3]  A. V. D. Vaart,et al.  Asymptotic Statistics: U -Statistics , 1998 .

[4]  Peter Dalgaard,et al.  R Development Core Team (2010): R: A language and environment for statistical computing , 2010 .

[5]  Rieder Helmut,et al.  Optimal influence curves for general loss functions , 2004 .

[6]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'été de probabilités de Saint-Flour IX-1979 , 1981 .

[7]  V. Yohai HIGH BREAKDOWN-POINT AND HIGH EFFICIENCY ROBUST ESTIMATES FOR REGRESSION , 1987 .

[8]  L. Fernholz von Mises Calculus For Statistical Functionals , 1983 .

[9]  Alfio Marazzi,et al.  Algorithms, Routines, and s Functions for Robust Statistics: The Fortran Library Robeth With an Interface to S-Plus , 1993 .

[10]  V. Yohai,et al.  OPTIMAL ROBUST M-ESTIMATES OF LOCATION , 2001 .

[11]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[12]  John M. Chambers,et al.  Software for data analysis , 2008 .

[13]  P. Hennequin,et al.  Quelques Aspects De La Statistique Robuste , 1981 .

[14]  Matthias Kohl,et al.  The cost of not knowing the radius , 2008, Stat. Methods Appl..

[15]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[16]  M. Hubert,et al.  An adjusted boxplot for skewed distributions , 2008, Comput. Stat. Data Anal..

[17]  H. Bauer Measure and integration theory , 2001 .

[18]  D. F. Andrews,et al.  Robust Estimates of Location , 1972 .

[19]  Peter Ruckdeschel,et al.  A motivation for $$1/ \sqrt{n}$$-shrinking neighborhoods , 2006 .

[20]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[21]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[22]  J. Pfanzagl Estimation in Semiparametric Models: Some Recent Developments , 1990 .

[23]  Matthias Kohl,et al.  Numerical Contributions to the Asymptotic Theory of Robustness , 2005 .

[24]  Hermann Witting,et al.  Mathematische Statistik II , 1985 .

[25]  D. Donoho,et al.  Pathologies of some Minimum Distance Estimators , 1988 .

[26]  V. Yohai,et al.  Robust Statistics: Theory and Methods , 2006 .

[27]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[28]  A. M. Shurygin,et al.  Redescending M-estimators , 2008 .

[29]  C. Jennison,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[30]  Helmut Rieder,et al.  A Robust Asymptotic Testing Model , 1978 .

[31]  Helmut Rieder,et al.  Estimates Derived from Robust Tests , 1980 .

[32]  P. Bickel,et al.  Robust Regression Based on Infinitesimal Neighbourhoods , 1984 .

[33]  Jürgen Elstrodt,et al.  Maß-und Integrationstheorie , 1996 .

[34]  P. Bickel Efficient and Adaptive Estimation for Semiparametric Models , 1993 .

[35]  H. Rieder Robust asymptotic statistics , 1994 .

[36]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[37]  Peter Ruckdeschel,et al.  A Motivation For 1 / √ n-Shrinking Neighborhoods , 2005 .

[38]  A Marazzi,et al.  Fitting the distributions of length of stay by parametric models. , 1998, Medical care.

[39]  Duncan J. Murdoch,et al.  Programming with R , 2007 .

[40]  J. Pfanzagl Parametric Statistical Theory , 1994 .

[41]  John M. Chambers,et al.  Software for Data Analysis: Programming with R , 2008 .

[42]  Peter Ruckdeschel,et al.  S4 Classes for Distributions , 2006 .

[43]  L. Cam,et al.  Théorie asymptotique de la décision statistique , 1969 .

[44]  P. J. Huber Robust Statistical Procedures , 1977 .

[45]  J. Hájek Local asymptotic minimax and admissibility in estimation , 1972 .

[46]  Peter Filzmoser,et al.  An Object-Oriented Framework for Robust Multivariate Analysis , 2009 .

[47]  D. F. Andrews,et al.  Robust Estimates of Location: Survey and Advances. , 1975 .

[48]  C. J. Lawrence Robust estimates of location : survey and advances , 1975 .

[49]  C. Huber-Carol Etude asymptotique de tests robustes , 1970 .

[50]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[51]  J. Pfanzagl Estimation in semiparametric models , 1990 .

[52]  F. Hampel Contributions to the theory of robust estimation , 1968 .

[53]  H. Bateman,et al.  LXXVI. The probability variations in the distribution of α particles , 1910 .