Wavelet Transform and Wavelet Based Numerical Methods: an Introduction

Wavelet transformation is a new development in the area of applied mathematics. Wavelets are mathematical tools that cut data or functions or operators into different frequency components, and then study each component with a resolution matching to its scale. In this article, we have made a brief discussion on historical development of wavelets, basic definitions, formulations of wavelets and different numerical meth- ods based on Haar and Daubechies wavelets for the numerical solution of differential equations, integral and integro-differential equations.

[1]  Fengqun Zhao,et al.  Haar Wavelet Method for Solving Two-Dimensional Burgers’ Equation , 2012 .

[3]  Mani Mehra,et al.  Time‐accurate solution of advection–diffusion problems by wavelet‐Taylor–Galerkin method , 2005 .

[4]  Wen-June Wang,et al.  Haar wavelet approach to nonlinear stiff systems , 2001 .

[5]  M. Mehra,et al.  Wavelet-Taylor Galerkin Method for the Burgers Equation , 2005 .

[6]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[7]  Carlo Cattani Haar wavelets based technique in evolution problems , 2004, Proceedings of the Estonian Academy of Sciences. Physics. Mathematics.

[8]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[9]  Siraj-ul-Islam,et al.  Haar wavelet collocation method for the numerical solution of boundary layer fluid flow problems , 2011 .

[10]  Farshid Mirzaee,et al.  Using rationalized Haar wavelet for solving linear integral equations , 2005, Appl. Math. Comput..

[11]  C. de Boor Review of Approximation theory, from Taylor polynomials to wavelets, applied and numerical Harmonic analysis by Ole Christensen, Khadija L. Christensen Birkhäuser, Basel, 2004 , 2005 .

[12]  Mani Mehra,et al.  A three-step wavelet Galerkin method for parabolic and hyperbolic partial differential equations , 2006, Int. J. Comput. Math..

[13]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[14]  Ülo Lepik,et al.  Solution of nonlinear Fredholm integral equations via the Haar wavelet method , 2007, Proceedings of the Estonian Academy of Sciences. Physics. Mathematics.

[15]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[16]  Wei Cai,et al.  ADAPTIVE WAVELET COLLOCATION METHODS FOR INITIAL VALUE BOUNDARY PROBLEMS OF NONLINEAR PDE''S , 1993 .

[17]  René Alt,et al.  An Application of Wavelet Theory to Early Breast Cancer , 2003, Numerical Software with Result Verification.

[18]  Ülo Lepik Solving integral and differential equations by the aid of non-uniform Haar wavelets , 2008, Appl. Math. Comput..

[19]  Wen-June Wang,et al.  State analysis of time-varying singular bilinear systems via Haar wavelets , 2000 .

[20]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[21]  Nicholas K.-R. Kevlahan,et al.  An adaptive wavelet collocation method for the solution of partial differential equations on the sphere , 2008, J. Comput. Phys..

[22]  Changrong Yi,et al.  Haar wavelet method for solving lumped and distributed-parameter systems , 1997 .

[23]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[24]  R. J. Peppin An Introduction to Random Vibrations, Spectral and Wavelet Analysis , 1994 .

[25]  Ülo Lepik,et al.  Numerical solution of differential equations using Haar wavelets , 2005, Math. Comput. Simul..

[26]  Ülo Lepik,et al.  Numerical solution of evolution equations by the Haar wavelet method , 2007, Appl. Math. Comput..

[27]  François Dubeau,et al.  Non-uniform Haar wavelets , 2004, Appl. Math. Comput..

[28]  C. Hwang,et al.  THE COMPUTATION OF WAVELET‐GALERKIN APPROXIMATION ON A BOUNDED INTERVAL , 1996 .

[29]  C. F. Chen,et al.  Wavelet approach to optimising dynamic systems , 1999 .

[30]  Hong Yan,et al.  Wavelets and Face Recognition , 2007 .

[31]  Mani Mehra,et al.  Wavelet multilayer Taylor Galerkin schemes for hyperbolic and parabolic problems , 2005, Appl. Math. Comput..

[32]  Siraj-ul-Islam,et al.  The numerical solution of second-order boundary-value problems by collocation method with the Haar wavelets , 2010, Math. Comput. Model..

[33]  C. Chui,et al.  On compactly supported spline wavelets and a duality principle , 1992 .

[34]  Mohsen Razzaghi,et al.  Rationalized Haar approach for nonlinear constrained optimal control problems , 2010 .

[35]  N. C. Nigam Introduction to Random Vibrations , 1983 .

[36]  Ü. Lepik,et al.  Application of nonuniform Haar wavelets for solving integral and differential equations , 2007, SPIE Optics East.

[37]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[38]  W. Sweldens,et al.  Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions , 1994 .

[39]  Samuel Paolucci,et al.  A multilevel wavelet collocation method for solving partial differential equations in a finite domain , 1995 .

[40]  Ole Christensen,et al.  Approximation Theory: From Taylor Polynomials to Wavelets , 2004 .

[41]  Siraj-ul-Islam,et al.  A comparative study of numerical integration based on Haar wavelets and hybrid functions , 2010, Comput. Math. Appl..

[42]  P. Brocheux,et al.  Sun Yat Sen , 1995 .

[43]  Gokul Hariharan,et al.  Haar wavelet in estimating depth profile of soil temperature , 2009, Appl. Math. Comput..

[44]  A. Haar Zur Theorie der orthogonalen Funktionensysteme , 1910 .

[45]  Ülo Lepik,et al.  Haar wavelet method for nonlinear integro-differential equations , 2006, Appl. Math. Comput..

[46]  Siraj-ul-Islam,et al.  Quadrature rules for numerical integration based on Haar wavelets and hybrid functions , 2011, Comput. Math. Appl..