Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces

In this paper, we present some novel results and ideas for robust and accurate implicit representation of geometric surfaces in finite element analysis. The novel contributions of this paper are threefold: (1) describe and validate a method to represent arbitrary parametric surfaces implicitly; (2) represent arbitrary solids implicitly, including sharp features using level sets and boolean operations; (3) impose arbitrary Dirichlet and Neumann boundary conditions on the resulting implicitly defined boundaries. The methods proposed do not require local refinement of the finite element mesh in regions of high curvature, ensure the independence of the domain’s volume on the mesh, do not rely on boundary regularization, and are well suited to methods based on fixed grids such as the extended finite element method (XFEM). Numerical examples are presented to demonstrate the robustness and effectiveness of the proposed approach and show that it is possible to achieve optimal convergence rates using a fully implicit representation of object boundaries. This approach is one step in the desired direction of tying numerical simulations to computer aided design (CAD), similarly to the isogeometric analysis paradigm.

[1]  H. Nguyen-Xuan,et al.  A smoothed finite element method for plate analysis , 2008 .

[2]  Vinh Phu Nguyen,et al.  Architecture tradeoffs of integrating a mesh generator to partition of unity enriched object-oriented finite element software , 2007 .

[3]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[4]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[5]  Karen Scrivener,et al.  Micro-mechanical modelling of alkali–silica-reaction-induced degradation using the AMIE framework , 2010 .

[6]  Sundararajan Natarajan,et al.  Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework , 2010, 1107.4732.

[7]  Nicolas Moës,et al.  Studied X-FEM enrichment to handle material interfaces with higher order finite element , 2010 .

[8]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[9]  Stéphane Bordas,et al.  Recent advances towards reducing the meshing and re-meshing burden in computational sciences , 2010 .

[10]  H. Nguyen-Xuan,et al.  A simple and robust three-dimensional cracking-particle method without enrichment , 2010 .

[11]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[12]  Ari Rappoport,et al.  Interactive Boolean operations for conceptual design of 3-D solids , 1997, SIGGRAPH.

[13]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[14]  Cyrille F. Dunant,et al.  Experimental and modelling study of the alkali-silica-reaction in concrete , 2009 .

[15]  T. I. Sheiko,et al.  R-Functions in Boundary Value Problems in Mechanics , 1995 .

[16]  S. Biringen,et al.  Numerical Simulation of a Cylinder in Uniform Flow , 1996 .

[17]  C. Engwer,et al.  An unfitted finite element method using discontinuous Galerkin , 2009 .

[18]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[19]  Mario Botsch,et al.  Feature sensitive surface extraction from volume data , 2001, SIGGRAPH.

[20]  R. Glowinski,et al.  A fictitious domain method for Dirichlet problem and applications , 1994 .

[21]  Wolfgang A. Wall,et al.  Interface handling for three‐dimensional higher‐order XFEM‐computations in fluid–structure interaction , 2009 .

[22]  Isaac Harari,et al.  A bubble‐stabilized finite element method for Dirichlet constraints on embedded interfaces , 2007 .

[23]  Isaac Harari,et al.  An efficient finite element method for embedded interface problems , 2009 .

[24]  G. Ventura On the elimination of quadrature subcells for discontinuous functions in the eXtended Finite‐Element Method , 2006 .

[25]  Samuel Geniaut,et al.  A stable 3D contact formulation using X-FEM , 2007 .

[26]  Ted Belytschko,et al.  Structured extended finite element methods for solids defined by implicit surfaces , 2002 .

[27]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[28]  K. Bathe,et al.  The inf-sup test , 1993 .

[29]  W. Shyy,et al.  Regular Article: An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries , 1999 .

[30]  K. Y. Dai,et al.  A Smoothed Finite Element Method for Mechanics Problems , 2007 .

[31]  Xiangmin Jiao,et al.  hp‐Generalized FEM and crack surface representation for non‐planar 3‐D cracks , 2009 .

[32]  K. Y. Dai,et al.  Theoretical aspects of the smoothed finite element method (SFEM) , 2007 .

[33]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[34]  T. Belytschko,et al.  Strong and weak arbitrary discontinuities in spectral finite elements , 2005 .

[35]  Erich Hartmann On the curvature of curves and surfaces defined by normalforms , 1999, Comput. Aided Geom. Des..

[36]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[37]  S. Padmanabhan,et al.  Implicit boundary method for finite element analysis using non‐conforming mesh or grid , 2008 .

[38]  John E. Dolbow,et al.  On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method , 2004 .

[39]  J. Prévost,et al.  Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation , 2003 .

[40]  Jean-Herve Prevost,et al.  MODELING QUASI-STATIC CRACK GROWTH WITH THE EXTENDED FINITE ELEMENT METHOD PART II: NUMERICAL APPLICATIONS , 2003 .

[41]  Stéphane Bordas,et al.  An extended finite element library , 2007 .

[42]  P. Colella,et al.  A Cartesian Grid Embedded Boundary Method for Poisson's Equation on Irregular Domains , 1998 .

[43]  Ernst Rank,et al.  The finite cell method for three-dimensional problems of solid mechanics , 2008 .

[44]  Gianluigi Rozza,et al.  On computing upper and lower bounds on the outputs of linear elasticity problems approximated by the smoothed finite element method , 2010 .

[45]  Stéphane Bordas,et al.  Numerical integration over arbitrary polygonal domains based on Schwarz–Christoffel conformal mapping , 2009 .

[46]  M. Rumpf,et al.  Composite finite elements for 3D image based computing , 2009 .

[47]  Antonio Huerta,et al.  Imposing essential boundary conditions in mesh-free methods , 2004 .

[48]  Jean-François Remacle,et al.  Imposing Dirichlet boundary conditions in the eXtended Finite Element Method , 2011 .

[49]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[50]  YingLiang Ma,et al.  Point inversion and projection for NURBS curve and surface: Control polygon approach , 2003, Comput. Aided Geom. Des..

[51]  B. Kaan Karamete AN ALGORITHM ORIENTED MESH DATABASE ( AOMD ) APPLICATION : DECIMATION B , .

[52]  T. Belytschko,et al.  Topology optimization with implicit functions and regularization , 2003 .

[53]  I. Babuska,et al.  The generalized finite element method , 2001 .

[54]  Ronald N. Perry,et al.  Adaptively sampled distance fields: a general representation of shape for computer graphics , 2000, SIGGRAPH.

[55]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[56]  John E. Dolbow,et al.  Residual-free bubbles for embedded Dirichlet problems , 2008 .

[57]  A. Lew,et al.  A discontinuous‐Galerkin‐based immersed boundary method , 2008 .

[58]  Elías Cueto,et al.  A natural neighbour Galerkin method with quadtree structure , 2005 .

[59]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[60]  Stéphane Bordas,et al.  Strain smoothing in FEM and XFEM , 2010 .

[61]  Kenjiro Terada,et al.  An integrated procedure for three‐dimensional structural analysis with the finite cover method , 2005 .

[62]  Thomas-Peter Fries,et al.  Higher‐order XFEM for curved strong and weak discontinuities , 2009 .

[63]  Stéphane Bordas,et al.  Smooth finite element methods: Convergence, accuracy and properties , 2008 .

[64]  Igor G. Tsukanov,et al.  Transfinite interpolation over implicitly defined sets , 2001, Comput. Aided Geom. Des..

[65]  Ashok V. Kumar,et al.  Implicit boundary method for analysis using uniform B‐spline basis and structured grid , 2008 .

[66]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[67]  Nicolas Moës,et al.  A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method , 2009 .