Prediction of massive blood transfusion in cardiac surgery

PurposeIn cardiac surgery with cardiopulmonary bypass (CPB), excessive blood loss requiring the transfusion of multiple red blood cell (RBC) units is a common complication that is associated with significant morbidity and mortality. The objective of this study was to develop a prediction rule for massive blood transfusion (MBT) that could be used to optimize the management of, and research on, at-risk patients.MethodsData were collected prospectively over the period from 2000 to 2005, on patients who underwent surgery with CPB at one hospital. Patients who received ≥ five units of RBC within one day of surgery were classified as MBT. Logistic regression was used to appropriately select and weigh perioperative variables in the prediction rule, which was developed on the initial 60% of the sample and validated on the remaining 40%.ResultsOf the 10,667 patients included, 925 (8.7%) had MBT. The clinical prediction rule included 12 variables (listed in order of predictive value: CPB duration, preoperative hemoglobin concentration, body surface area, nadir CPB hematocrit, previous sternotomy, preoperative shock, preoperative platelet count, urgency of surgery, age, surgeon, deep hypothermic circulatory arrest, and type of procedure) and was highly discriminative (c-index = 0.88). In the validation set, those classified as low-, moderate-, and high-risk by a simple risk score derived from the prediction rule had a 5%, 27%, and 58% chance of MBT, respectively.ConclusionA clinical prediction rule was developed that accurately identified patients at low-risk or high-risk for MBT. Studies are needed to determine the external generalizability and clinical utility of the prediction rule.RésuméObjectifEn cardiochirurgie avec circulation extracorporelle (CEC), une perte de sang excessive exigeant la transfusion de multiples unités de culots globulaires (CG) est une complication fréquente associée à une morbidité et à une mortalité significatives. L’objectifde notre étude était d’élaborer une règle de prédiction pour la transfusion massive (TM) qui pourrait être utilisée pour optimaliser la recherche sur les patients à risque, et leur traitement.MéthodeLes données prospectives ont été recueillies sur les patients qui ont subi une opération avec CEC dans un hôpital entre 2000 et 2005. Les patients ayant reçu ≥ cinq unités de CG en moins d’un jour postopératoire ont été classés comme TM. La régression logistique a permis de choisir et pondérer convenablement les variables périopératoires de la règle de prédiction qui a été élaborée d’après les premiers 60 % de l’échantillon et validée sur les 40 % restant.RésultatsDes 10 667 patients inclus, 925 (8,7 %) avaient eu une TM. La règle de prédiction clinique incluait 12 variables (présentées par ordre de valeur prédictive: durée de la CEC, concentration d’hémoglobine préopératoire, surface corporelle, hématocrite minimal de la CEC, sternotomie antérieure, choc

[1]  G. Nuttall,et al.  Coagulation tests predict bleeding after cardiopulmonary bypass. , 1997, Journal of cardiothoracic and vascular anesthesia.

[2]  C. Hogue,et al.  Factors Associated with Excessive Postoperative Blood Loss and Hemostatic Transfusion Requirements: A Multivariate Analysis in Cardiac Surgical Patients , 1996, Anesthesia and analgesia.

[3]  J. Avorn,et al.  Multivariate predictors of blood product use in cardiac surgery. , 2003, Journal of cardiothoracic and vascular anesthesia.

[4]  V. Rao,et al.  Hemodilution during cardiopulmonary bypass is an independent risk factor for acute renal failure in adult cardiac surgery. , 2005, The Journal of thoracic and cardiovascular surgery.

[5]  R. Damiano,et al.  Multivariate analysis of risk factors for deep and superficial sternal infection after coronary artery bypass grafting at a tertiary care medical center. , 2004, Seminars in thoracic and cardiovascular surgery.

[6]  D. O'shaughnessy,et al.  Activated recombinant factor VII after cardiopulmonary bypass reduces allogeneic transfusion in complex non-coronary cardiac surgery: randomized double-blind placebo-controlled pilot study. , 2005, British journal of anaesthesia.

[7]  R. Bick Disseminated intravascular coagulation current concepts of etiology, pathophysiology, diagnosis, and treatment. , 2003, Hematology/oncology clinics of North America.

[8]  S. McCluskey,et al.  Recombinant factor VIIa for intractable blood loss after cardiac surgery: a propensity score–matched case‐control analysis , 2005, Transfusion.

[9]  A. Gonzalez,et al.  Hemodilution and surgical hemostasis contribute significantly to transfusion requirements in patients undergoing coronary artery bypass. , 2005, The Journal of thoracic and cardiovascular surgery.

[10]  G. Grunwald,et al.  Factors affecting transfusion of fresh frozen plasma, platelets, and red blood cells during elective coronary artery bypass graft surgery. , 2003, Archives of pathology & laboratory medicine.

[11]  L. Stitt,et al.  Does clopidogrel increase blood loss following coronary artery bypass surgery? , 2004, The Annals of thoracic surgery.

[12]  B. Spiess,et al.  Current status of antifibrinolytics in cardiopulmonary bypass and elective deep hypothermic circulatory arrest. , 2003, Anesthesiology clinics of North America.

[13]  Jennifer Y. King,et al.  Aprotinin, Blood Loss, and Renal Dysfunction in Deep Hypothermic Circulatory Arrest , 2001, Circulation.

[14]  F. Loop,et al.  Determinants of blood utilization during myocardial revascularization. , 1985, The Annals of thoracic surgery.

[15]  T. Bilfinger,et al.  Blood Conservation in Coronary Artery Bypass Surgery: Prediction with Assistance of a Computer Model , 1989, The Thoracic and cardiovascular surgeon.

[16]  C. Bodian,et al.  Predictors of transfusion requirements for cardiac surgical procedures at a blood conservation center. , 2004, The Annals of thoracic surgery.

[17]  E. L. Wallace,et al.  The specific hospital significantly affects red cell and component transfusion practice in coronary artery bypass graft surgery: a study of five hospitals , 1998, Transfusion.

[18]  Deepak L. Bhatt,et al.  The Efficacy and Safety of Perioperative Antiplatelet Therapy , 2004, Journal of Thrombosis and Thrombolysis.

[19]  L. Goodnough,et al.  Blood lost and blood transfused in coronary artery bypass graft operation as implications for blood transfusion and blood conservation strategies. , 1993, Surgery, gynecology & obstetrics.

[20]  J. Birkmeyer,et al.  Reexploration for Hemorrhage Following Coronary Artery Bypass GraftingIncidence and Risk Factors , 2000 .

[21]  S. McCluskey,et al.  The independent association of massive blood loss with mortality in cardiac surgery , 2004, Transfusion.

[22]  S. Karthik,et al.  Reexploration for bleeding after coronary artery bypass surgery: risk factors, outcomes, and the effect of time delay. , 2004, The Annals of thoracic surgery.

[23]  L. Goodnough,et al.  A standardized method for calculating blood loss , 1997, Transfusion.

[24]  W. Dietrich,et al.  The Predictive Value of Modified Computerized Thromboelastography and Platelet Function Analysis for Postoperative Blood Loss in Routine Cardiac Surgery , 2003, Anesthesia and analgesia.

[25]  Stanley Lemeshow,et al.  Multiple Logistic Regression , 2005 .

[26]  T. Treasure,et al.  Resternotomy for bleeding after cardiac operation: a marker for increased morbidity and mortality. , 1995, The Annals of thoracic surgery.

[27]  L. Harker,et al.  Bleeding complications associated with cardiopulmonary bypass. , 1990, Blood.

[28]  J L Cox,et al.  Reexploration for bleeding is a risk factor for adverse outcomes after cardiac operations. , 1996, The Journal of thoracic and cardiovascular surgery.

[29]  R. Navickis,et al.  A systematic review of the comparative safety of colloids. , 2004, Archives of surgery.

[30]  Andrew D. Rosenberg,et al.  Practice Guidelines for Blood Component Therapy: A Report by the American Society of Anesthesiologists Task Force on Blood Component Therapy , 1996, Anesthesiology.

[31]  L. Goodnough,et al.  Management approaches to platelet-related microvascular bleeding in cardiothoracic surgery. , 2000, The Annals of thoracic surgery.

[32]  M. Newman,et al.  Genetic factors contribute to bleeding after cardiac surgery , 2005, Journal of thrombosis and haemostasis : JTH.

[33]  M. Borger,et al.  Low hematocrit during cardiopulmonary bypass is associated with increased risk of perioperative stroke in cardiac surgery. , 2005, The Annals of thoracic surgery.

[34]  J. Légaré,et al.  Identifying patients at risk of intraoperative and postoperative transfusion in isolated CABG: toward selective conservation strategies. , 2004, The Annals of thoracic surgery.

[35]  V Gildengorin,et al.  Predictors of excessive blood use after coronary artery bypass grafting. A multivariate analysis. , 1989, The Journal of thoracic and cardiovascular surgery.

[36]  A. Spotnitz,et al.  Re-exploration for hemorrhage following open heart surgery differentiation on the causes of bleeding and the impact on patient outcomes. , 2001, Annals of thoracic and cardiovascular surgery : official journal of the Association of Thoracic and Cardiovascular Surgeons of Asia.

[37]  E. L. Wallace,et al.  Determinants of red cell, platelet, plasma, and cryoprecipitate transfusions during coronary artery bypass graft surgery: the Collaborative Hospital Transfusion Study , 1996, Transfusion.

[38]  M M Cohen,et al.  A multivariable model for predicting the need for blood transfusion in patients undergoing first‐time elective coronary bypass graft surgery , 2001, Transfusion.

[39]  R. Whitlock,et al.  Bleeding in cardiac surgery: its prevention and treatment--an evidence-based review. , 2005, Critical care clinics.