Per instance algorithm configuration of CMA-ES with limited budget
暂无分享,去创建一个
Marc Schoenauer | Johann Dréo | Pierre Savéant | Nacim Belkhir | Marc Schoenauer | J. Dréo | P. Savéant | Nacim Belkhir | Johann Dréo
[1] Kevin Leyton-Brown,et al. Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.
[2] A. E. Eiben,et al. Efficient relevance estimation and value calibration of evolutionary algorithm parameters , 2007, 2007 IEEE Congress on Evolutionary Computation.
[3] L. Darrell Whitley,et al. The dispersion metric and the CMA evolution strategy , 2006, GECCO.
[4] Bernd Bischl,et al. Learning Feature-Parameter Mappings for Parameter Tuning via the Profile Expected Improvement , 2015, GECCO.
[5] Kevin Leyton-Brown,et al. SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..
[6] Michèle Sebag,et al. Maximum Likelihood-Based Online Adaptation of Hyper-Parameters in CMA-ES , 2014, PPSN.
[7] Klaus Schittkowski,et al. Test examples for nonlinear programming codes , 1980 .
[8] Anne Auger,et al. Impacts of invariance in search: When CMA-ES and PSO face ill-conditioned and non-separable problems , 2011, Appl. Soft Comput..
[9] Yuri Malitsky,et al. ISAC - Instance-Specific Algorithm Configuration , 2010, ECAI.
[10] Raymond Ros,et al. Real-Parameter Black-Box Optimization Benchmarking 2009: Experimental Setup , 2009 .
[11] Kevin Leyton-Brown,et al. Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms , 2006, CP.
[12] F. Hutter,et al. Hydra-MIP : Automated Algorithm Configuration and Selection for Mixed Integer Programming , 2011 .
[13] Thomas Stützle,et al. A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.
[14] Marc Schoenauer,et al. Feature Based Algorithm Configuration: A Case Study with Differential Evolution , 2016, PPSN.
[15] Yuri Malitsky,et al. Features for Exploiting Black-Box Optimization Problem Structure , 2013, LION.
[16] Kevin Leyton-Brown,et al. Algorithm runtime prediction: Methods & evaluation , 2012, Artif. Intell..
[17] Anna Syberfeldt,et al. Parameter tuned CMA-ES on the CEC'15 expensive problems , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).
[18] Heike Trautmann,et al. Low-Budget Exploratory Landscape Analysis on Multiple Peaks Models , 2016, GECCO.
[19] Mario A. Muñoz,et al. A Meta-learning Prediction Model of Algorithm Performance for Continuous Optimization Problems , 2012, PPSN.
[20] Yuri Malitsky,et al. Instance-specific algorithm configuration , 2014, Constraints.
[21] D. Eichmann. More Test Examples For Nonlinear Programming Codes , 2016 .
[22] Kevin Leyton-Brown,et al. Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection , 2010, AAAI.
[23] Bernd Bischl,et al. Exploratory landscape analysis , 2011, GECCO '11.
[24] Nikolaus Hansen,et al. Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed , 2009, GECCO '09.
[25] Rainer Storn,et al. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..
[26] Saman K. Halgamuge,et al. Exploratory Landscape Analysis of Continuous Space Optimization Problems Using Information Content , 2015, IEEE Transactions on Evolutionary Computation.
[27] Yoav Shoham,et al. Learning the Empirical Hardness of Optimization Problems: The Case of Combinatorial Auctions , 2002, CP.
[28] Holger H. Hoos,et al. Programming by optimization , 2012, Commun. ACM.
[29] Ernesto P. Adorio,et al. MVF - Multivariate Test Functions Library in C for Unconstrained Global Optimization , 2005 .
[30] Nikolaus Hansen,et al. Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.
[31] David H. Wolpert,et al. No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..
[32] Thomas Bartz-Beielstein,et al. Sequential parameter optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.
[33] Kevin Leyton-Brown,et al. : The Design and Analysis of an Algorithm Portfolio for SAT , 2007, CP.
[34] Marc Schoenauer,et al. Surrogate Assisted Feature Computation for Continuous Problems , 2016, LION.